Inverse design of multi-band acoustic topology insulator based on deep learning

被引:0
|
作者
Qin, Yao [1 ,2 ,3 ]
Li, Xinxin [3 ]
He, Guangchen [3 ]
Li, Mingxing [1 ,2 ,3 ]
Cai, Chengxin [1 ,2 ,3 ]
机构
[1] Henan Univ Technol, Key Lab Grain Informat Proc & Control, Minist Educ, Zhengzhou 450001, Peoples R China
[2] Henan Univ Technol, Henan Key Lab Grain Photoelect Detect & Control, Zhengzhou 450001, Peoples R China
[3] Henan Univ Technol, Coll Informat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
PHONONIC CRYSTALS; OPTIMIZATION; STATES;
D O I
10.1063/5.0150976
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The reverse design method of acoustic structure based on a deep learning algorithm has been developed as an important means of metamaterial design. In this paper, a multi-band acoustic topological insulator is designed, and the improved competitive search algorithm Long Short-Term Memory (LSTM) algorithm model is used to predict its potential optimal parameter combination to assist the on-demand design of the working frequency band of the multi-band acoustic topology insulator. Finally, the numerical simulation model is established using the optimized structural parameters, and the topologically protected boundary state is studied, which verifies the effectiveness of the method. The research results provide a reference for the on-demand design of multi-band antennas, sound absorption, sound insulation, and other acoustic communication functional devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Design of Multi-band Antenna Using Sperrtopf
    Yokoyama, Tsutomu
    Hoashi, T.
    Nakamiya, T.
    PIERS 2010 CAMBRIDGE: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 191 - +
  • [42] Load Balancing and Handover Optimization in Multi-band Networks using Deep Reinforcement Learning
    Gupta, Manan
    Dreifuerst, Ryan M.
    Yazdan, Ali
    Huang, Po-Han
    Kasturia, Sanjay
    Andrews, Jeffrey G.
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [43] A Novel Deep Reinforcement Learning Enabled Multi-Band PSS for Multi-Mode Oscillation Control
    Zhang, Guozhou
    Hu, Weihao
    Zhao, Junbo
    Cao, Di
    Chen, Zhe
    Blaabjerg, Frede
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (04) : 3794 - 3797
  • [44] Design of multi-band negative index metamaterial at the microwave band
    Li, Jinying
    Yang, Rongcao
    Guo, Shuqin
    Tian, Jinping
    Xue, Wenrui
    Guangxue Xuebao/Acta Optica Sinica, 2014, 34
  • [45] An optimization-based design technique for multi-band power amplifiers
    Arabi E.
    Bagot P.
    Bensmida S.
    Morris K.
    Beach M.
    Arabi, Eyad (eyad.arabi@brisol.ac.uk), 2018, Electromagnetics Academy (80) : 1 - 12
  • [46] Realization of multi-band perfect absorber in graphene based metal-insulator-metal metamaterials
    Jia, Yuanlin
    Yin, Huaiyuan
    Yao, Huawei
    Wang, Junqiao
    Fan, Chunzhen
    RESULTS IN PHYSICS, 2021, 25
  • [47] Investigation and Design of a Multi-band Wearable Antenna
    Thalmann, Thomas
    Popovic, Zoya
    Notaros, Branislav M.
    Mosig, Juan R.
    2009 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1-6, 2009, : 425 - +
  • [48] Design of a Multi-band Antenna for WLAN Application
    Huang, X. J.
    Xie, F.
    Tong, M. S.
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 1847 - 1850
  • [49] Design of Multi-Band Microstrip Power Dividers
    Chu, Qing-Xin
    Lin, Feng
    2011 IEEE ELECTRICAL DESIGN OF ADVANCED PACKAGING AND SYSTEMS SYMPOSIUM (EDAPS), 2011,
  • [50] Inverse design method of airfoil based on deep learning
    He L.
    Qian W.
    Liu T.
    Zhang X.
    Dong K.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2020, 35 (09): : 1909 - 1917