Volatility forecasting with Hybrid-long short-term memory models: Evidence from the COVID-19 period

被引:0
|
作者
Yang, Ao [1 ,2 ]
Ye, Qing [1 ]
Zhai, Jia [1 ]
机构
[1] Xian Jiaotong Liverpool Univ, Int Business Sch Suzhou, Suzhou, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Int Business Sch Suzhou, Suzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
COVID-19; Hybrid-long short-term memory model; stock market volatility; volatility forecasting; RANGE-BASED ESTIMATION; NEURAL-NETWORKS; INDEX; VARIANCE; LSTM;
D O I
10.1002/ijfe.2805
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Volatility forecasting, a central issue in financial risk modelling and management, has attracted increasing attention after several major financial market crises. In this article, we draw upon the literature on volatility forecasting and hybrid models to construct the Hybrid-long short-term memory (LSTM) models to forecast the intraday realized volatility in three major US stock indexes. We construct the hybrid models by combining one or multiple traditional time series models with the LSTM model, and incorporating either the estimated parameters, or the predicted volatility, or both from the statistical models as additional input values into the LSTM model. We perform the out-of-sample test of our Hybrid-LSTM models in volatility forecasting during the coronavirus disease 2019 (COVID-19) period. Empirical results show that the Hybrid-LSTM models can still significantly improve the volatility forecasting performance of the LSTM model during the COVID-19 period. By analysing how the construction methods may influence the forecasting performance of the Hybrid-LSTM models, we provide some suggestions on their design. Finally, we identify the optimal Hybrid-LSTM model for each stock index and compare its performance with the LSTM model on each day during our sample period. We find that the Hybrid-LSTM models' great capability of capturing market dynamics explains their good performance in forecasting.
引用
收藏
页码:2766 / 2786
页数:21
相关论文
共 50 条
  • [21] Attention-Based and Time Series Models for Short-Term Forecasting of COVID-19 Spread
    Markeviciute, Jurgita
    Bernataviciene, Jolita
    Levuliene, Ruta
    Medvedev, Viktor
    Treigys, Povilas
    Venskus, Julius
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 695 - 714
  • [22] Maize seeds forecasting with hybrid directional and bi-directional long short-term memory models
    Isik, Hakan
    Tasdemir, Sakir
    Taspinar, Yavuz Selim
    Kursun, Ramazan
    Cinar, Ilkay
    Yasar, Ali
    Yasin, Elham Tahsin
    Koklu, Murat
    FOOD SCIENCE & NUTRITION, 2024, 12 (02): : 786 - 803
  • [23] Hybrid Forecasting Model for Short-Term Wind Power Prediction Using Modified Long Short-Term Memory
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    ENERGIES, 2019, 12 (20)
  • [24] From the Board: Short-term and Long-term Trade Responses to COVID-19
    不详
    LEGAL ISSUES OF ECONOMIC INTEGRATION, 2020, 47 (03): : 215 - 220
  • [25] Modeling and control of COVID-19: A short-term forecasting in the context of india
    Mandal, Manotosh
    Jana, Soovoojeet
    Khatua, Anupam
    Kar, T. K.
    CHAOS, 2020, 30 (11)
  • [27] Data science approach to stock prices forecasting in Indonesia during Covid-19 using Long Short-Term Memory (LSTM)
    Widodo Budiharto
    Journal of Big Data, 8
  • [28] An Autoregressive Graph Convolutional Long Short-Term Memory Hybrid Neural Network for Accurate Prediction of COVID-19 Cases
    Ntemi, Myrsini
    Sarridis, Ioannis
    Kotropoulos, Constantine
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (02) : 724 - 735
  • [29] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [30] Short-Term and Long-Term COVID-19 Pandemic Forecasting Revisited with the Emergence of OMICRON Variant in Jordan
    Hussein, Tareq
    Hammad, Mahmoud H.
    Surakhi, Ola
    AlKhanafseh, Mohammed
    Fung, Pak Lun
    Zaidan, Martha A.
    Wraith, Darren
    Ershaidat, Nidal
    VACCINES, 2022, 10 (04)