Considering critical building materials for embodied carbon emissions in buildings: A machine learning-based prediction model and tool

被引:9
|
作者
Su, Shu [1 ]
Zang, Zhaoyin [1 ]
Yuan, Jingfeng [1 ]
Pan, Xinyu [1 ]
Shan, Ming [2 ]
机构
[1] Southeast Univ, Sch Civil Engn, Dept Construct & Real Estate, Nanjing 210096, Peoples R China
[2] Cent South Univ, Sch Civil Engn, Dept Engn Management, Changsha 410012, Peoples R China
基金
中国国家自然科学基金;
关键词
Embodied carbon; Machine learning; Building construction; Carbon emission prediction tool; GREENHOUSE-GAS EMISSIONS; LIFE-CYCLE ASSESSMENT; RESIDENTIAL BUILDINGS; ENERGY-CONSUMPTION; CONSTRUCTION PHASE; DIOXIDE EMISSIONS; OFFICE BUILDINGS; CONCRETE; PRECAST; CHINA;
D O I
10.1016/j.cscm.2024.e02887
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Construction activities discharge considerable carbon emissions, causing serious environmental problems and gaining increasing attention. For the large-scale construction area, high emission intensity, and significant carbon reduction potential, embodied carbon emissions of buildings worth special studying. However, previous studies are usually post-evaluation and ignore the influences of project, construction and management. This paper focuses on critical building materials and adopts machine learning methods to realize carbon prediction at design stage. The activity data, including critical building materials, water, and energy consumption, is analyzed and 30 influencing factors at the project, construction, and management levels are identified. Three algorithms (artificial neural network, support vector regression and extreme gradient boosting) are used to develop machine learning models. The proposed methodology is applied to 70 projects in the Yangtze River Delta region of China. Results show that the established models achieved high interpretability (R2 >0.7) and small average error (5.33%), well proving theirs feasibility. Furthermore, an automated tool is developed to assist practitioners to predict the critical materials consumption and embodied carbon emissions conveniently. The proposed operable model and practical tool can efficiently support effective adjustments and improvement to reduce carbon in construction.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Machine learning-based prediction of critical illness in children visiting the emergency department
    Hwang, Soyun
    Lee, Bongjin
    PLOS ONE, 2022, 17 (02):
  • [32] Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data
    Sin, Petr
    Hokynkova, Alica
    Marie, Novakova
    Andrea, Pokorna
    Krc, Rostislav
    Podrouzek, Jan
    DIAGNOSTICS, 2022, 12 (04)
  • [33] A machine learning-based reliability assessment model for critical software systems
    Challagulla, Venkata U. B.
    Bastani, Farokh B.
    Paul, Raymond A.
    Tsai, Wei-Tek
    Chen, Yinong
    COMPSAC 2007: THE THIRTY-FIRST ANNUAL INTERNATIONAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE, VOL I, PROCEEDINGS, 2007, : 79 - +
  • [34] Development of a machine learning-based sketch planning model for predicting mobile emissions
    Ko, Sanghyeon
    Son, Hojun Daniel
    Park, Jinchul
    Lee, Dongwoo
    TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2021, 10
  • [35] Machine learning-based prediction model and visual interpretation for prostate cancer
    Gang Chen
    Xuchao Dai
    Mengqi Zhang
    Zhujun Tian
    Xueke Jin
    Kun Mei
    Hong Huang
    Zhigang Wu
    BMC Urology, 23
  • [36] Machine learning-based prediction model for distant metastasis of breast cancer
    Duan, Hao
    Zhang, Yu
    Qiu, Haoye
    Fu, Xiuhao
    Liu, Chunling
    Zang, Xiaofeng
    Xu, Anqi
    Wu, Ziyue
    Li, Xingfeng
    Zhang, Qingchen
    Zhang, Zilong
    Cui, Feifei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [37] Development and application of a machine learning-based antenatal depression prediction model
    Hu, Chunfei
    Lin, Hongmei
    Xu, Yupin
    Fu, Xukun
    Qiu, Xiaojing
    Hu, Siqian
    Jin, Tong
    Xu, Hualin
    Luo, Qiong
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 375 : 137 - 147
  • [38] A Machine Learning-Based Prediction Model for Preterm Birth in Rural India
    Raja, Rakesh
    Mukherjee, Indrajit
    Sarkar, Bikash Kanti
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [39] Towards a Machine Learning-based Model for Corporate Loan Default Prediction
    Berrada, Imane Rhzioual
    Barramou, Fatimazahra
    Alami, Omar Bachir
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 565 - 573
  • [40] Development and application of machine learning-based prediction model for distillation column
    Kwon, Hyukwon
    Oh, Kwang Cheol
    Choi, Yeongryeol
    Chung, Yongchul G.
    Kim, Junghwan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (05) : 1970 - 1997