Cross-Subject Transfer Method Based on Domain Generalization for Facilitating Calibration of SSVEP-Based BCIs

被引:9
|
作者
Huang, Jiayang [1 ]
Zhang, Zhi-Qiang [2 ]
Xiong, Bang [1 ]
Wang, Quan [1 ]
Wan, Bo [1 ]
Li, Fengqi [1 ]
Yang, Pengfei [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Key Lab Smart Human Comp Interact & Wearable Tech, Xian 710071, Peoples R China
[2] Univ Leeds, Inst Robot Autonomous Syst & Sensing, Sch Elect & Elect Engn, Leeds LS2 9JT, England
基金
中国国家自然科学基金;
关键词
Calibration; Correlation; Visualization; Electroencephalography; Transfer learning; Training; Steady-state; Brain-computer interfaces (BCIs); cross-subject; domain generalization; steady-state visual evoked potential (SSVEP); transfer learning; BRAIN-COMPUTER INTERFACE; CANONICAL CORRELATION-ANALYSIS; ENHANCING DETECTION; COMPONENT ANALYSIS; EEG; PERFORMANCE; ELECTRODE; SPELLER;
D O I
10.1109/TNSRE.2023.3305202
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs), various spatial filtering methods based on individual calibration data have been proposed to alleviate the interference of spontaneous activities in SSVEP signals for enhancing the SSVEP detection performance. However, the time-consuming calibration session would increase the visual fatigue of subjects and reduce the usability of the BCI system. The key idea of this study is to propose a cross-subject transfer method based on domain generalization, which transfers the domain-invariant spatial filters and templates learned from source subjects to the target subject with no access to the EEG data from the target subject. The transferred spatial filters and templates are obtained by maximizing the intra- and inter-subject correlations using the SSVEP data corresponding to the target and its neighboring stimuli. For SSVEP detection of the target subject, four types of correlation coefficients are calculated to construct the feature vector. Experimental results estimated with three SSVEP datasets show that the proposed cross-subject transfer method improves the SSVEP detection performance compared to state-of-art methods. The satisfactory results demonstrate that the proposed method provides an effective transfer learning strategy requiring no tedious data collection process for new users, holding the potential of promoting practical applications of SSVEP-based BCI.
引用
收藏
页码:3307 / 3319
页数:13
相关论文
共 50 条
  • [21] An Analysis on the Effect of Phase on the Performance of SSVEP-Based BCIs
    Gauci, Norbert
    Falzon, Owen
    Camilleri, Tracey
    Camilleri, Kenneth
    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 134 - 139
  • [22] Compact CNN with Dynamic Window for SSVEP-based BCIs
    Zhou, Weizhi
    Liu, Aiping
    Chen, Xun
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3097 - 3101
  • [23] Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
    Lin, Zhonglin
    Zhang, Changshui
    Wu, Wei
    Gao, Xiaorong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (12) : 2610 - 2614
  • [24] Optimizing a dual-frequency and phase modulation method for SSVEP-based BCIs
    Liang, Liyan
    Lin, Jiajun
    Yang, Chen
    Wang, Yijun
    Chen, Xiaogang
    Gao, Shangkai
    Gao, Xiaorong
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (04)
  • [25] Frequency Superposition - A Multi-Frequency Stimulation Method in SSVEP-based BCIs
    Mu, Jing
    Grayden, David B.
    Tan, Ying
    Oetomo, Denny
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 5924 - 5927
  • [26] Cross-subject EMG hand gesture recognition based on dynamic domain generalization
    Ye, Yalan
    He, Yujie
    Pan, Tongjie
    Dong, Qiaosen
    Yuan, Jiajun
    zhou, Wengang
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [27] Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
    Lin, Zhonglin
    Zhang, Changshui
    Wu, Wei
    Gao, Xiaorong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (06) : 1172 - 1176
  • [28] Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs
    Mehdizavareh, Mohammad Hadi
    Hemati, Sobhan
    Soltanian-Zadeh, Hamid
    PLOS ONE, 2020, 15 (01):
  • [29] Incorporating Neighboring Stimuli Data for Enhanced SSVEP-Based BCIs
    Huang, Jiayang
    Yang, Pengfei
    Xiong, Bang
    Wang, Quan
    Wan, Bo
    Ruan, Ziling
    Yang, Keyi
    Zhang, Zhi-Qiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [30] A new spatial contrast coding approach for SSVEP-based BCIs
    Zhong, Hui
    Ming, Gege
    Pei, Weihua
    Gao, Xiaorong
    Wang, Yijun
    JOURNAL OF NEUROSCIENCE METHODS, 2025, 415