An Endogenous Prompting Mechanism for Sulfur Conversions Via Coupling with Polysulfides in Li-S Batteries

被引:11
|
作者
Zheng, Qingyi [1 ]
Hou, Qing [1 ]
Shu, Zhenghao [1 ]
Liu, Guoqing [1 ]
Fan, Xiaoxiang [1 ]
Wang, Kun [1 ]
Fan, Jingmin [1 ]
Yuan, Ruming [1 ]
Zheng, Mingsen [1 ,2 ]
Dong, Quanfeng [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Fujian, Peoples R China
[2] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Endogenous Promoting Mechanism; Lithium-Sulfur Batteries; Organophosphorus Polysulfides; Shuttle Effect; Sulfur Conversion; REDOX MEDIATORS; LITHIUM; PERFORMANCE; HETEROSTRUCTURES; KINETICS; REAGENT; GROWTH;
D O I
10.1002/anie.202308726
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The sluggish kinetics process and shuttling of soluble intermediates present in complex conversion between sulfur and lithium sulfide severely limit the practical application of lithium-sulfur batteries. Herein, by introducing a designated functional organic molecule to couple with polysulfide intermediators, an endogenous prompting mechanism of sulfur conversions has thus been created leading to an alternative sulfur-electrode process, in another words, to build a fast "internal cycle" of promotors that can promote the slow "external cycle" of sulfur conversions. The coupling-intermediators between the functional organic molecule and polysulfides, organophosphorus polysulfides, to be the "promotors" for sulfur conversions, are not only insoluble in the electrolyte but also with higher redox-activity. So the sulfur-electrode process kinetics is greatly improved and the shuttle effect is eliminated simultaneously by this strategy. Meanwhile, with the endogenous prompting mechanism, the morphology of the final discharge product can be modified into a uniform covering film, which is more conducive to its decomposition when charging. Benefiting from the effective mediation of reaction kinetics and control of intermediates solubility, the lithium-sulfur batteries can act out excellent rate performance and cycling stability.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Revisit Carbon/Sulfur Composite for Li-S Batteries
    Zheng, Jianming
    Gu, Meng
    Wagner, Michael J.
    Hays, Kevin A.
    Li, Xiaohong
    Zuo, Pengjian
    Wang, Chongmin
    Zhang, Ji-Guang
    Liu, Jun
    Xiao, Jie
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1624 - A1628
  • [12] Synergistic effect of tubular amorphous carbon and polypyrrole on polysulfides in Li-S batteries
    Li, Shanshan
    Jin, Bo
    Li, Huan
    Dong, Chunwei
    Zhang, Bo
    Xu, Jiaohui
    Jiang, Qing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 806 : 41 - 49
  • [13] Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion
    Zhang, Teng
    Zhang, Long
    Zhao, Lina
    Huang, Xiaoxiao
    Hou, Yanglong
    ENERGYCHEM, 2020, 2 (04)
  • [14] Boosting the Electrochemical Performance of Li-S Batteries with a Dual Polysulfides Confinement Strategy
    Yao, Yu
    Feng, Wanlin
    Chen, Minglong
    Zhong, Xiongwu
    Wu, Xiaojun
    Zhang, Haibin
    Yu, Yan
    SMALL, 2018, 14 (42)
  • [15] Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li-S batteries
    Mukherjee, Sankha
    Kavalsky, Lance
    Chattopadhyay, Kinnor
    Singh, Chandra Veer
    NANOSCALE, 2018, 10 (45) : 21335 - 21352
  • [16] Dual electrocatalytic heterostructures for efficient immobilization and conversion of polysulfides in Li-S batteries
    Yang, Menghua
    Wang, Xuewei
    Wu, Jinfeng
    Tian, Yue
    Huang, Xingyu
    Liu, Ping
    Li, Xianyang
    Li, Xinru
    Liu, Xiaoyan
    Li, Hexing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (34) : 18477 - 18487
  • [17] Polyamidoamine dendrimer modified Ketjen Black mixed sulfur coated cathode for enhancing polysulfides adsorbability in Li-S batteries
    Cuijuan Zhang
    Yazhou Liang
    Youqiang Wang
    Yanping He
    Arslan Majeed
    Zuolei Yang
    Shanshan Yao
    Xiangqian Shen
    Tianbao Li
    Shibiao Qin
    Ionics, 2021, 27 : 2997 - 3005
  • [18] Polyamidoamine dendrimer modified Ketjen Black mixed sulfur coated cathode for enhancing polysulfides adsorbability in Li-S batteries
    Zhang, Cuijuan
    Liang, Yazhou
    Wang, Youqiang
    He, Yanping
    Majeed, Arslan
    Yang, Zuolei
    Yao, Shanshan
    Shen, Xiangqian
    Li, Tianbao
    Qin, Shibiao
    IONICS, 2021, 27 (07) : 2997 - 3005
  • [19] Effect of Electrolyte on High Sulfur Loading Li-S Batteries
    Sun, Ke
    Matarasso, Avi K.
    Epler, Ruby M.
    Tong, Xiao
    Su, Dong
    Marschilok, Amy C.
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Gan, Hong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) : A416 - A423
  • [20] Housing Sulfur in Polymer Composite Frameworks for Li-S Batteries
    Hencz, Luke
    Chen, Hao
    Ling, Han Yeu
    Wang, Yazhou
    Lai, Chao
    Zhao, Huijun
    Zhang, Shanqing
    NANO-MICRO LETTERS, 2019, 11 (01)