Inequalities with parameters for twice-differentiable functions involving Riemann-Liouville fractional integrals

被引:0
|
作者
Hezenci, Fatih [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
关键词
Hermite-Hadamard inequality; Simpson inequality; Fractional integral operators; Convex function; Twice differentiable function; MIDPOINT-TYPE INEQUALITIES; HADAMARD-TYPE INEQUALITIES; HERMITE-HADAMARD; REAL NUMBERS; SIMPSON TYPE; MAPPINGS;
D O I
10.2298/FIL2409275H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is given an equality for twice-differentiable functions whose second derivatives in absolute value are convex. By using this equality, it is established several left and right Hermite- Hadamard type inequalities and Simpson type inequalities for the case of Riemann-Liouville fractional integral. Namely, midpoint, trapezoid and also Simpson type inequalities are obtained for Riemann- Liouville fractional integral by using special cases of main results.
引用
收藏
页码:3275 / 3294
页数:20
相关论文
共 50 条
  • [41] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [42] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487
  • [43] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [44] Generalizations of Riemann-Liouville fractional integrals and applications
    Lan, Kunquan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) : 12833 - 12870
  • [45] SOME OSTROWSKI TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR h-CONVEX FUNCTIONS
    Liu, Wenjun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 998 - 1004
  • [46] New Versions of Midpoint Inequalities Based on Extended Riemann-Liouville Fractional Integrals
    Hyder, Abd-Allah
    Budak, Hueseyin
    Barakat, Mohamed A.
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [47] The multi-parameterized integral inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Long, Yun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (01)
  • [48] INEQUALITIES FOR CO-ORDINATED M-CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Yildiz, Cetin
    Tunc, Mevlut
    Kavurmaci, Havva
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (01): : 45 - 55
  • [49] A NOTE ON HERMITE-HADAMARD INEQUALITIES FOR PRODUCTS OF CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Chen, Feixiang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 299 - 306
  • [50] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440