Short-term Wind Power Forecasting Using the Hybrid Model of Improved Variational Mode Decomposition and Maximum Mixture Correntropy Long Short-term Memory Neural Network

被引:28
|
作者
Lu, Wenchao [1 ]
Duan, Jiandong [1 ]
Wang, Peng [2 ]
Ma, Wentao [1 ]
Fang, Shuai [1 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
[2] Xianyang Power Supply Co, State Grid Shaanxi Elect Power Co, Xianyang 712009, Peoples R China
基金
中国国家自然科学基金;
关键词
Short-term wind power forecasting; Long Short -Term Memory neural network; Mixture Correntropy; Variational mode decomposition; Particle Swarm Optimization; PREDICTION; FRAMEWORK; VMD;
D O I
10.1016/j.ijepes.2022.108552
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of emerging technology, wind power forecasting hybrid with artificial intelligence methods has become a research hotspot. Most of these methods are based on Mean Square Error (MSE) loss. However, when conducting the forecasting studies, the forecasting models built based on the traditional MSE loss have a poor effect, and the wind power data also lack the sensitivity to the nuclear parameters, make it difficult to achieve satisfactory results. Therefore, a wind power forecasting method based on Mixture Correntropy (MC) Long Short-term Memory (LSTM) neural network and Improved Variational Mode Decomposition (IVMD) is proposed in this paper. Aiming at the fact that the mixing coefficient and kernel parameters in Maximum Mixture Correntropy Criterion (MMCC) loss have an impact on its performance, Particle Swarm Optimization (PSO) algorithm is used to optimize the parameters, and PMC(PSO-MC)-LSTM model is constructed. Meanwhile, an IVMD-SE data preprocessing strategy combining Sample Entropy (SE) and IVMD is proposed. The IVMD-SE-PMCLSTM hybrid forecasting model is constructed. Finally, four groups original data from a wind farm are simulated to verify the forecasting performance of the proposed method. The results show that the hybrid forecasting method proposed in this paper can be better applied to the forecasting with higher data complexity.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Short-term wind power prediction using a novel model based on butterfly optimization algorithm-variational mode decomposition-long short-term memory
    Wang, Yonggang
    Zhao, Kaixing
    Hao, Yue
    Yao, Yilin
    APPLIED ENERGY, 2024, 366
  • [22] Adaptive Reservoir Inflow Forecasting Using Variational Mode Decomposition and Long Short-Term Memory
    Hu, Hu
    Yang, Kan
    Yang, Zhe
    IEEE ACCESS, 2021, 9 : 119032 - 119048
  • [23] A Hybrid Short-Term Traffic Flow Multistep Prediction Method Based on Variational Mode Decomposition and Long Short-Term Memory Model
    Bing, Qichun
    Shen, Fuxin
    Chen, Xiufeng
    Zhang, Weijian
    Hu, Yanran
    Qu, Dayi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [24] Research on A Forecasting Model of Wind Power based on Recurrent Neural Network with Long Short-term Memory
    Li, Anying
    Cheng, Lei
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 1776 - 1779
  • [25] Short-Term Probabilistic Forecasting Method for Wind Speed Combining Long Short-Term Memory and Gaussian Mixture Model
    He, Xuhui
    Lei, Zhihao
    Jing, Haiquan
    Zhong, Rendong
    ATMOSPHERE, 2023, 14 (04)
  • [26] Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network
    Frank, Corinna
    Russwurm, Marc
    Fluixa-Sanmartin, Javier
    Tuia, Devis
    FRONTIERS IN WATER, 2023, 5
  • [27] Short-Term Wind Power Forecasting Using Structured Neural Network
    Abesamis, KreigAudrey
    Ang, Peterson
    Bisquera, Frances Irene
    Catabay, Grace
    Tindogan, Paulo
    Ostia, Conrado, Jr.
    Pacis, Michael
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [28] Short-term wind power forecasting using ridgelet neural network
    Amjady, Nima
    Keynia, Farshid
    Zareipour, Hamidreza
    ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (12) : 2099 - 2107
  • [29] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [30] Evolving long short-term memory neural network for wind speed forecasting
    Huang, Cong
    Karimi, Hamid Reza
    Mei, Peng
    Yang, Daoguang
    Shi, Quan
    INFORMATION SCIENCES, 2023, 632 : 390 - 410