Algebraic versions of Hartogs' theorem

被引:0
|
作者
Bilski, Marcin [1 ]
Bochnak, Jacek [2 ]
Kucharz, Wojciech [1 ]
机构
[1] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, Lojasiewicza 6, Pl-30348 Krakow, Poland
[2] Pont lEtang 8, CH-1323 Romainmotier, Switzerland
关键词
Regular function; regularity test; algebraic curve; GEOMETRY;
D O I
10.1142/S0219199723500669
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be an uncountable field of characteristic 0. For a given functionf:Kn -> K,withn >= 2, we prove thatfis regular if and only if the restriction f |C is a regularfunction for every algebraic curve C in Kn which is either an affine line or is isomorphictoaplanecurveinK2defined by the equation Xp-Yq=0, where p<q are prime numbers. We also show that regularity off can be verified on other algebraic curvesinKnwith desired geometric properties. Furthermore, if the field K is not algebraically closed, we construct aK-valued function on Kn that is not regular, but all its restrictions to nonsingular algebraic curves in Kn are regular functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Multidimensional Boundary Analog of the Hartogs Theorem in Circular Domains
    Kytmanov, Alexander M.
    Myslivets, Simona G.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2018, 11 (01): : 79 - 90
  • [42] A Morse-theoretical proof of the Hartogs extension theorem
    Joël Merker
    Egmont Porten
    The Journal of Geometric Analysis, 2007, 17
  • [44] Generalization of the Hartogs-Bochner theorem to unbounded domains
    Khidr, Shaban
    Sambou, Salomon
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3119 - 3126
  • [45] Hartogs-type theorems in real algebraic geometry, I
    Bilski, Marcin
    Bochnak, Jacek
    Kucharz, Wojciech
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (790): : 197 - 221
  • [46] Hartogs-type theorems in real algebraic geometry, II
    Bilski, Marcin
    Bochnak, Jacek
    Kucharz, Wojciech
    MATHEMATISCHE ANNALEN, 2024, 389 (04) : 3747 - 3768
  • [47] Brauer versions of Dolfi theorem
    School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
    Zhongbei Daxue Xuebao (Ziran Kexue Ban), 2006, 2 (183-185):
  • [48] Stochastic versions of the LaSalle theorem
    Mao, XR
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 153 (01) : 175 - 195
  • [49] SUBHARMONIC VERSIONS OF FATOUS THEOREM
    MEEK, JL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (02) : 313 - &
  • [50] STRONG VERSIONS OF BELL THEOREM
    STAPP, HP
    PHYSICAL REVIEW A, 1994, 49 (05): : 3182 - 3187