Polymer extrusion die design using a data-driven autoencoders technique

被引:3
|
作者
Ghnatios, Chady [1 ]
Gravot, Eloi [2 ]
Champaney, Victor [2 ]
Verdon, Nicolas [3 ]
Hascoet, Nicolas [2 ]
Chinesta, Francisco [4 ,5 ]
机构
[1] HESAM Univ, Arts & Metiers Inst Technol, Lab PIMM, CNRS,Cnam,PIMM Lab,SKF Chaire ENSAM, 151 Blvd Hop, F-75013 Paris, France
[2] HESAM Univ, Arts & Metiers Inst Technol, PIMM Lab, CNRS,Cnam, 151 Blvd Hop, F-75013 Paris, France
[3] Goodyear, Paris Def 1,Tour First,1 Sq Saisons, F-92400 Courbevoie, France
[4] ENSAM Inst Technol, ESI Grp Chair, 151 Blvd Hop, F-75013 Paris, France
[5] ENSAM Inst Technol, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
关键词
Die design; Machine learning; Artificial intelligence; Autoencoder; Data-driven modeling; NON-NEWTONIAN FLUID; FLOW;
D O I
10.1007/s12289-023-01796-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die's design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
    Gao, L. Mars
    Kutz, J. Nathan
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 480 (2286):
  • [42] A data-driven manufacturing support system for rubber extrusion lines
    Barreto Cabrera, Claudia
    Ordieres Mere, Joaquin B.
    Castejon Limas, Manuel
    del Coz Diaz, Juan Jose
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2010, 48 (08) : 2219 - 2231
  • [43] Data-driven design of molecular nanomagnets
    Duan, Yan
    Rosaleny, Lorena E.
    Coutinho, Joana T.
    Gimenez-Santamarina, Silvia
    Scheie, Allen
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [44] Data-driven design of molecular nanomagnets
    Yan Duan
    Lorena E. Rosaleny
    Joana T. Coutinho
    Silvia Giménez-Santamarina
    Allen Scheie
    José J. Baldoví
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    Nature Communications, 13
  • [45] Curriculum Design - A Data-Driven Approach
    Chang, Jung-Kuei
    Tsao, Nai-Lung
    Kuo, Chin-Hwa
    Hsu, Hui-Huang
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 492 - 496
  • [46] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47
  • [47] Data-driven design of soft sensors
    James T. Glazar
    Vivek B. Shenoy
    Nature Machine Intelligence, 2022, 4 : 194 - 195
  • [48] Data-driven computational protein design
    Frappier, Vincent
    Keating, Amy E.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 69 : 63 - 69
  • [49] DATA-DRIVEN DESIGN & PREDICTIVE GAMIFICATION
    Stogr, Jakub
    DISCO 2015: FROM ANALOG EDUCATION TO DIGITAL EDUCATION, 2015, : 193 - 193
  • [50] Design of a Data-Driven PID Controller
    Yamamoto, Toru
    Takao, Kenji
    Yamada, Takaaki
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (01) : 29 - 39