Cellular A1-homology and the motivic version of Matsumoto's theorem

被引:3
|
作者
Morel, Fabien [1 ]
Sawant, Anand [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, India
关键词
Cellular A(1)-homology; A(1-)fundamental groups of reductive algebraic groups;
D O I
10.1016/j.aim.2023.109346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new version of A(1)-homology, called cellular A(1)- homology, for smooth schemes over a field that admit an increasing filtration by open subschemes with cohomologically trivial closed strata. We provide several explicit computations of cellular A(1)-homology and use them to determine the A(1) -fundamental group of a split reductive group over an arbitrary field, thereby obtaining the motivic version of Matsumoto's theorem on universal central extensions of split, semisimple, simply connected algebraic groups. As applications, we uniformly explain and generalize results due to Brylinski-Deligne and Esnault-Kahn-Levine-Viehweg, determine the isomorphism classes of central extensions of such an algebraic group by an arbitrary strictly A(1)-invariant sheaf and also reprove classical results of E. Cartan on homotopy groups of complex Lie groups.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:110
相关论文
共 50 条
  • [41] A Quantum Version of Sanov's Theorem
    Igor Bjelaković
    Jean-Dominique Deuschel
    Tyll Krüger
    Ruedi Seiler
    Rainer Siegmund-Schultze
    Arleta Szkoła
    Communications in Mathematical Physics, 2005, 260 : 659 - 671
  • [42] Linear Version of Parseval's Theorem
    Hassanzadeh, Mohammad
    Shahrrava, Behnam
    IEEE ACCESS, 2022, 10 : 27230 - 27241
  • [43] The matrix version of Hamburger’s theorem
    Yu. M. Dyukarev
    A. E. Choque Rivero
    Mathematical Notes, 2012, 91 : 493 - 499
  • [44] On a Spectral Version of Cartan’s Theorem
    Sayani Bera
    Vikramjeet Singh Chandel
    Mayuresh Londhe
    The Journal of Geometric Analysis, 2022, 32
  • [45] An Algebraic Version of Haag’s Theorem
    Mihály Weiner
    Communications in Mathematical Physics, 2011, 305 : 469 - 485
  • [46] A fractal version of Schultz's theorem
    Navascués, MA
    Sebastián, MV
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (01): : 63 - 70
  • [47] A Bicategorical Version of Masuoka’s Theorem
    J. Gómez-Torrecillas
    B. Mesablishvili
    Algebras and Representation Theory, 2012, 15 : 147 - 194
  • [48] A strong version of Liouville's theorem
    Hansen, Wolfhard
    AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (07): : 583 - 595
  • [49] A constructive version of Birkhoff's theorem
    Carlstrom, Jesper
    MATHEMATICAL LOGIC QUARTERLY, 2008, 54 (01) : 27 - 34
  • [50] On an algebraic version of Tamano's theorem
    Buzyakova, Raushan Z.
    APPLIED GENERAL TOPOLOGY, 2009, 10 (02): : 221 - 225