Cellular A1-homology and the motivic version of Matsumoto's theorem

被引:3
|
作者
Morel, Fabien [1 ]
Sawant, Anand [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, India
关键词
Cellular A(1)-homology; A(1-)fundamental groups of reductive algebraic groups;
D O I
10.1016/j.aim.2023.109346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a new version of A(1)-homology, called cellular A(1)- homology, for smooth schemes over a field that admit an increasing filtration by open subschemes with cohomologically trivial closed strata. We provide several explicit computations of cellular A(1)-homology and use them to determine the A(1) -fundamental group of a split reductive group over an arbitrary field, thereby obtaining the motivic version of Matsumoto's theorem on universal central extensions of split, semisimple, simply connected algebraic groups. As applications, we uniformly explain and generalize results due to Brylinski-Deligne and Esnault-Kahn-Levine-Viehweg, determine the isomorphism classes of central extensions of such an algebraic group by an arbitrary strictly A(1)-invariant sheaf and also reprove classical results of E. Cartan on homotopy groups of complex Lie groups.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:110
相关论文
共 50 条
  • [1] A motivic version of the theorem of Fontaine and Wintenberger
    Vezzani, Alberto
    COMPOSITIO MATHEMATICA, 2019, 155 (01) : 38 - 88
  • [2] RELATIVE A1-HOMOLOGY AND ITS APPLICATIONS
    Shimizu, Yuri
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (01) : 129 - 141
  • [3] Universal birational invariants and A1-homology
    Shimizu, Yuri
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 807 - 821
  • [4] Zeroth A1-homology of smooth proper varieties
    Koizumi, Junnosuke
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 824 - 834
  • [5] A1-Homotopy Sheaves and A1-Homology Sheaves
    Morel, Fabien
    A1-ALGEBRAIC TOPOLOGY OVER A FIELD, 2012, 2052 : 149 - 175
  • [6] Heegaard Floer homology of Matsumoto's manifolds
    Tange, Motoo
    ADVANCES IN MATHEMATICS, 2017, 320 : 475 - 499
  • [7] A HOMOLOGY VERSION OF THE BORSUK-ULAM THEOREM
    WALKER, JW
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (07): : 466 - 468
  • [8] Levine's motivic comparison theorem revisited
    Ivorra, Florian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 617 : 67 - 107
  • [9] ON MATSUMOTO'S STATEMENT OF BERWALD'S THEOREM ON PROJECTIVE FLATNESS
    Antonelli, Peter L.
    Rutz, Solange F.
    Hirakawa, Carlos E.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (01): : 17 - 33
  • [10] A generalization of Coxeter groups, root systems, and Matsumoto’s theorem
    István Heckenberger
    Hiroyuki Yamane
    Mathematische Zeitschrift, 2008, 259 : 255 - 276