Estimation of Spatial Distribution Considering Indirect Data Using Gaussian Process Regression

被引:0
|
作者
Tsuda, Yuto [1 ]
Tomizawa, Yukihisa [1 ]
Yoshida, Ikumasa [2 ]
Otake, Yu [3 ]
机构
[1] Tokyo City Univ, Grad Sch Integrat Sci & Engn, Disaster Mitigat Lab, Setagaya Ku, Tokyo, Japan
[2] Tokyo City Univ, Dept Urban & Civil Engn, Disaster Mitigat Lab, Setagaya Ku, Tokyo, Japan
[3] Tohoku Univ, Dept Civil Environm Engn, Adv Infrastruct Syst Lab, Aoba Ku, Sendai, Miyagi, Japan
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Since soil properties are generally measured at limited locations, it is preferable to use all available measured data including indirect data effectively to estimate the spatial distribution in a rational manner. A more accurate estimation can be achieved by considering the indirect measurement data that are highly correlated with the soil property in interest. In this study, we use GPR with multiple random fields. The random and trend components are estimated using the Whittle-Matern autocorrelation function. The accuracy of estimation is compared between the cases with and without consideration of indirect data for the random component. Even if the direct data is not observed around the target point, a detailed spatial distribution is obtained by considering the surrounding indirect data when they have strong correlation.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [41] Domain Decomposition Approach for Fast Gaussian Process Regression of Large Spatial Data Sets
    Park, Chiwoo
    Huang, Jianhua Z.
    Ding, Yu
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1697 - 1728
  • [42] Histogram Matching Based on Gaussian Distribution Using Regression Analysis Variance Estimation
    Kawakami, Yusuke
    Hattori, Tetsuo
    Imai, Yoshiro
    Ando, Kazuaki
    Horikawa, Yo
    Rajapakse, R. P. C. Janaka
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P575 - P578
  • [43] Aircraft Centre-of-Gravity Estimation using Gaussian Process Regression Models
    Yang, Xiaoke
    Luo, Mingqiang
    Zhang, Jing
    Yang, Lingyu
    2016 IEEE/CSAA INTERNATIONAL CONFERENCE ON AIRCRAFT UTILITY SYSTEMS (AUS), 2016, : 991 - 995
  • [44] Continuum robot state estimation using Gaussian process regression on SE(3)
    Lilge, Sven
    Barfoot, Timothy D.
    Burgner-Kahrs, Jessica
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2022, 41 (13-14): : 1099 - 1120
  • [45] Optical properties estimation of photonic crystal fiber using Gaussian process regression
    Kaium, S. K. Md Abdul
    Mollah, Md Aslam
    OPTICS CONTINUUM, 2024, 3 (08): : 1369 - 1388
  • [46] Commercial MAV Velocity Estimation Using Gaussian Process Regression for Drift Reduction
    Caldas, Kenny A. Q.
    Inoue, Roberto S.
    Terra, Marco H.
    2022 IEEE SENSORS, 2022,
  • [47] Bias Estimation and Downscaling for Regional Climate Models Using Gaussian Process Regression
    Kupilik, Matthew
    Witmer, Frank
    Grill, Olivia
    IEEE ACCESS, 2024, 12 : 118362 - 118370
  • [48] Frequency Domain Estimation of Parallel Hammerstein Systems using Gaussian Process Regression
    Stoddard, Jeremy G.
    Welsh, James S.
    IFAC PAPERSONLINE, 2018, 51 (15): : 1014 - 1019
  • [49] Improving gravitational-wave parameter estimation using Gaussian process regression
    Moore, Christopher J.
    Berry, Christopher P. L.
    Chua, Alvin J. K.
    Gair, Jonathan R.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [50] SRAM Memory Margin Probability Failure Estimation using Gaussian Process Regression
    Rana, Manish
    Canal, Ramon
    Han, Jie
    Cockburn, Bruce
    PROCEEDINGS OF THE 34TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD), 2016, : 448 - 451