Rapid detection of urine chloride enabled by ion exchange in hydrophilic lead halide perovskite nanocrystals

被引:6
|
作者
Li, Xianli [1 ]
Li, Jie [2 ,3 ]
Hong, Peibin [2 ,3 ]
Ni, Wen-Xiu [1 ]
Luo, Binbin [2 ,3 ]
机构
[1] Shantou Univ, Med Coll, Dept Med Chem, Shantou 515041, Guangdong, Peoples R China
[2] Shantou Univ, Dept Chem, Shantou 515063, Guangdong, Peoples R China
[3] Shantou Univ, Key Lab Preparat & Applicat Ordered Struct Mat Gua, Shantou 515063, Guangdong, Peoples R China
关键词
QUANTUM DOTS; LUMINESCENT; CHEMOSENSOR; DIAGNOSIS; SERUM; SWEAT;
D O I
10.1039/d3ay00449j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The rapid and precise detection of chloride ions in biosystems is of great importance for clinical diagnosis. In this work, hydrophilic CsPbBr3 perovskite nanocrystals (PNCs) with a high photoluminescence (PL) quantum yield (QY) of 59% (0.5 g L-1) are successfully achieved through the passivation of micellar glycyrrhizic acid (GA), which enables good dispersion of PNCs in ethanol. Due to the ionic nature and halogen-dominated band edge, PNCs exhibit fast ion-exchange and halogen-dependent optical properties. As a result, colloidal GA-capped PNC ethanol solution shows a continuous PL shift once aqueous Cl- with different concentrations is added. This fluorescence sensor shows a wide linear detection range (2-200 mM) of Cl-, short response time (similar to 1 s), and low limit of detection (1.82 mM). Because of the encapsulation of GA, good water and pH stability, and anti-interference performance are observed for the GA-capped PNC-based fluorescence sensor. Our findings provide an insight into the biosensor applications of hydrophilic PNCs.
引用
收藏
页码:2318 / 2325
页数:8
相关论文
共 50 条
  • [31] A stable lead halide perovskite nanocrystals protected by PMMA
    Li, Xiao
    Xue, Zhenjie
    Luo, Dan
    Huang, Chuanhui
    Liu, Lizhi
    Qiao, Xuezhi
    Liu, Cong
    Song, Qian
    Yan, Cong
    Li, Yingchun
    Wang, Tie
    SCIENCE CHINA-MATERIALS, 2018, 61 (03) : 363 - 370
  • [32] High Intensity Photodegradation of Lead Halide Perovskite Nanocrystals
    Shaw, Peter J.
    Mercier, Thomas M.
    Bailey, Christopher G.
    Kanaras, Antonios G.
    Lagoudakis, Pavlos G.
    Charlton, Martin D. B.
    LIGHT-EMITTING DEVICES, MATERIALS, AND APPLICATIONS XXIV, 2020, 11302
  • [33] Are Inorganic Lead Halide Perovskite Nanocrystals Promising Scintillators?
    Li, Xiaoming
    Hu, Xudong
    Li, Chongkang
    Yang, Wanqiu
    Wang, Chujie
    Chen, Yiyang
    Zeng, Haibo
    ACS ENERGY LETTERS, 2023, 8 (07) : 2996 - 3004
  • [34] Surface chemistry of colloidal lead halide perovskite nanocrystals
    Kovalenko, Maksym
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [35] Structure-Tuned Lead Halide Perovskite Nanocrystals
    Hassan, Yasser
    Song, Yin
    Pensack, Ryan D.
    Abdelrahman, Ahmed I.
    Kobayashi, Yoichi
    Winnik, Mitchell A.
    Scholes, Gregory D.
    ADVANCED MATERIALS, 2016, 28 (03) : 566 - +
  • [36] Surface Chemistry of Lead Halide Perovskite Colloidal Nanocrystals
    De Trizio, Luca
    Infante, Ivan
    Manna, Liberato
    ACCOUNTS OF CHEMICAL RESEARCH, 2023, 56 (13) : 1815 - 1825
  • [37] Electrochemiluminescence and stability of cesium lead halide perovskite nanocrystals
    Vasylkovskyi, Volodymyr
    Skrypnyk, Tamara
    Zholudov, Yuriy
    Bespalova, Iryna
    Sorokin, Alexander
    Snizhko, Dmytro
    Slipchenko, Olena
    Chichkov, Boris
    Slipchenko, Mykola
    JOURNAL OF LUMINESCENCE, 2023, 261
  • [38] Shining Light on the Structure of Lead Halide Perovskite Nanocrystals
    Chen, Jia-Kai
    Zhao, Qing
    Shirahata, Naoto
    Yin, Jun
    Bakr, Osman M.
    Mohammed, Omar F.
    Sun, Hong-Tao
    ACS MATERIALS LETTERS, 2021, 3 (06): : 845 - 861
  • [39] Growth of Lead Halide Perovskite Nanocrystals: Still in Mystery
    Pradhan, Narayan
    ACS PHYSICAL CHEMISTRY AU, 2022, 2 (04): : 268 - 276
  • [40] Toward the Controlled Synthesis of Lead Halide Perovskite Nanocrystals
    Sun, Changjiu
    Jiang, Yuanzhi
    Zhang, Li
    Wei, Keyu
    Yuan, Mingjian
    ACS NANO, 2023, 17 (18) : 17600 - 17609