The energy density of biharmonic quadratic maps between spheres

被引:0
|
作者
Ambrosie, Rares [1 ]
Oniciuc, Cezar [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Blvd Carol I 11, Iasi 700506, Romania
关键词
Biharmonic maps; Spherical maps; Homogeneous polynomial maps; CONSTANT CURVATURE; MINIMAL-SURFACES;
D O I
10.1016/j.difgeo.2023.102096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove that a quadratic form from Sm to Sn is non-harmonic biharmonic if and only if it has constant energy density (m + 1)/2. Then, we give a positive answer to an open problem raised in [1] concerning the structure of non-harmonic biharmonic quadratic forms. As a direct application, using classification results for harmonic quadratic forms, we infer classification results for non-harmonic biharmonic quadratic forms. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On quadratic forms between spheres
    Chang, SP
    GEOMETRIAE DEDICATA, 1998, 70 (02) : 111 - 124
  • [22] On Quadratic Forms Between Spheres
    Shaoping Chang
    Geometriae Dedicata, 1998, 70 : 111 - 124
  • [23] A note on equivariant biharmonic maps and stable biharmonic maps
    Ou, Ye-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
  • [24] HARMONIC AND BIHARMONIC MAPS BETWEEN TANGENT BUNDLES
    Belarbi, L.
    El Hendi, H.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 187 - 199
  • [25] Rotationally symmetric biharmonic maps between models
    Montaldo, S.
    Oniciuc, C.
    Ratto, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 494 - 508
  • [26] Biharmonic maps between warped product manifolds
    Balmus, A.
    Montaldo, S.
    Oniciuc, C.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 449 - 466
  • [27] Dilatation of maps between spheres
    Peng, CK
    Tang, ZZ
    PACIFIC JOURNAL OF MATHEMATICS, 2002, 204 (01) : 209 - 222
  • [28] Harmonic maps between spheres
    Bizon, P
    Chmaj, T
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1957): : 403 - 415
  • [29] Quadratic maps between modules
    Gaudier, Henri
    Hartl, Manfred
    JOURNAL OF ALGEBRA, 2009, 322 (05) : 1667 - 1688
  • [30] QUADRATIC MAPS BETWEEN GROUPS
    Hartl, Manfred
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 55 - 74