Least squares estimation of a quasiconvex regression function

被引:0
|
作者
Mukherjee, Somabha [1 ,2 ]
Patra, Rohit K. [1 ,2 ]
Johnson, Andrew L. [3 ]
Morita, Hiroshi [4 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, Singapore
[2] Univ Florida, Dept Stat, Gainesville, FL USA
[3] Texas A&M Univ, Ind & Syst Engn, College Stn, TX USA
[4] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
基金
美国国家科学基金会;
关键词
convex input requirement sets; mixed-integer quadratic program; nonparametric least squares; production function; shape restriction; sharp oracle inequality; ISOTONIC REGRESSION; ORACLE INEQUALITIES; RISK BOUNDS; ALGORITHM; SELECTION;
D O I
10.1093/jrsssb/qkad133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a new approach for the estimation of a multivariate function based on the economic axioms of quasiconvexity (and monotonicity). On the computational side, we prove the existence of the quasiconvex constrained least squares estimator (LSE) and provide a characterisation of the function space to compute the LSE via a mixed-integer quadratic programme. On the theoretical side, we provide finite sample risk bounds for the LSE via a sharp oracle inequality. Our results allow for errors to depend on the covariates and to have only two finite moments. We illustrate the superior performance of the LSE against some competing estimators via simulation. Finally, we use the LSE to estimate the production function for the Japanese plywood industry and the cost function for hospitals across the US.
引用
收藏
页码:512 / 534
页数:23
相关论文
共 50 条
  • [21] A fuzzy logistic regression model based on the least squares estimation
    Gao, Yifan
    Lu, Qiujun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3562 - 3579
  • [22] Least squares estimation in linear regression models with vague concepts
    Krätschmer, V
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 407 - 414
  • [23] Partial Least Squares Regression based Facial Age Estimation
    Zeng, Xue-Qiang
    Xiang, Run
    Zou, Hua-Xing
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 416 - 421
  • [24] Error estimation of regression parameters in a least-squares method
    Zajdel', R.M.
    Atomnaya Energiya, 1994, 77 (06): : 463 - 466
  • [25] Least squares orthogonal polynomial regression estimation for irregular design
    Popinski, Waldemar
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (03) : 631 - 647
  • [26] AN APPROACH TO INTERVAL ESTIMATION IN PARTIAL LEAST-SQUARES REGRESSION
    PHATAK, A
    REILLY, PM
    PENLIDIS, A
    ANALYTICA CHIMICA ACTA, 1993, 277 (02) : 495 - 501
  • [27] Least-squares wavelet kernel method for regression estimation
    Wen, XJ
    Xu, XM
    Cai, YZ
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 582 - 591
  • [28] On estimation of multivariate prediction regions in partial least squares regression
    Lin, Weilu
    Zhuang, Yingping
    Zhang, Siliang
    Martin, Elaine
    JOURNAL OF CHEMOMETRICS, 2013, 27 (09) : 243 - 250
  • [29] A Least Squares Method for Variance Estimation in Heteroscedastic Nonparametric Regression
    Zhou, Yuejin
    Cheng, Yebin
    Tong, Tiejun
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [30] Componentwise Fuzzy Linear Regression Using Least Squares Estimation
    Yoon, Jin Hee
    Choi, Seung Hoe
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2009, 15 (2-3) : 137 - 153