Mechanical Activation Assisted Self-Propagating High-Temperature Synthesis of HfB2-HfC Composites

被引:4
|
作者
Zaitsev, A. A. [1 ]
Potanin, A. Yu. [1 ]
Pogozhev, Yu. S. [1 ]
Filonenko, I. O. [1 ]
Levashov, E. A. [1 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
关键词
HfB2-HfC; mechanical activation; self-propagating high-temperature synthesis; composite powder; HAFNIUM CARBIDE POWDER; BOROTHERMAL REDUCTION; HFC; CERAMICS; MICROSTRUCTURE; CONSOLIDATION; DEPOSITION; BORIDE; TIME;
D O I
10.3103/S1061386223020073
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure as well as the phase and granulometric compositions of the submicron-sized heterophase HfB2-34 at % HfC powders fabricated by mechanical activation assisted self-propagating high-temperature synthesis from (Hf + B + C) mixtures were studied. It was demonstrated that HfB2-HfC powders can be produced from (Hf + B + C) mixtures by mechanochemical synthesis in a planetary ball mill (centrifugal factor, 60 g) during more than 15 min. The SHS product with composition HfB2-34 at % HfC consisted of a combination of highly porous agglomerates sized 5-100 & mu;m, which can be easily broken into composite HfB2-HfC particles sized 1-10 & mu;m. Important that each composite particle of powder have a heterophase structure which consists of HfB2 grains sized 0.5-2.0 & mu;m and equiaxial HfC grains sized 0.3-1 & mu;m. Impurity oxygen content in the SHS products did not exceed 0.29 wt %. Milling of the SHS product allowed to obtain the HfB2-34 at % HfC powder characterized by the average particle size of 4 & mu;m with heterophase submicron-sized microstructure and oxygen content of 0.72 wt %.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 50 条
  • [41] Effect of preliminary separate mechanical activation on self-propagating high-temperature synthesis of niobium silicides
    Shkoda, O. A.
    Salamatov, V. G.
    MATERIALS TODAY-PROCEEDINGS, 2019, 12 : 111 - 115
  • [42] Production of NixAly/Al2O3 composites using a combination of mechanical activation and self-propagating high-temperature synthesis
    Talako, T. L.
    Sharafutdinov, M. R.
    Grigor'eva, T. F.
    Vorsina, I. A.
    Barinova, A. P.
    Lyakhov, N. Z.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2009, 45 (06) : 662 - 665
  • [44] Production of NixAly/Al2O3 composites using a combination of mechanical activation and self-propagating high-temperature synthesis
    T. L. Talako
    M. R. Sharafutdinov
    T. F. Grigor’eva
    I. A. Vorsina
    A. P. Barinova
    N. Z. Lyakhov
    Combustion, Explosion, and Shock Waves, 2009, 45 : 662 - 665
  • [45] Self-propagating high-temperature synthesis CrB2
    Hangzhou Special Metallurgical, Materials Inst, Hangzhou, China
    Fenmo Yejin Jishu/Powder Metallurgy Technology, 1998, 16 (04): : 254 - 255
  • [46] Preparation of Al-TiC composites by self-propagating high-temperature synthesis
    Li, PJ
    Kandalova, EG
    Nikitin, VI
    Makarenko, AG
    Luts, AR
    Zhang, ZF
    SCRIPTA MATERIALIA, 2003, 49 (07) : 699 - 703
  • [47] Catalytically assisted self-propagating high-temperature synthesis of tantalum carbide powders
    Kim, T
    Wooldridge, MS
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2001, 84 (05) : 976 - 982
  • [48] Ultrafine Si/Al2O3 composites obtained by combining methods of mechanical activation and self-propagating high-temperature synthesis
    T. F. Grigorieva
    T. L. Talako
    M. R. Sharafutdinov
    Yu. D. Kaminskii
    I. A. Vorsina
    S. V. Tsibulya
    A. P. Barinova
    N. Z. Lyakhov
    Combustion, Explosion, and Shock Waves, 2010, 46 : 36 - 40
  • [49] Ultrafine Si/Al2O3 composites obtained by combining methods of mechanical activation and self-propagating high-temperature synthesis
    Grigorieva, T. F.
    Talako, T. L.
    Sharafutdinov, M. R.
    Kaminskii, Yu. D.
    Vorsina, I. A.
    Tsibulya, S. V.
    Barinova, A. P.
    Lyakhov, N. Z.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2010, 46 (01) : 36 - 40
  • [50] Planetary Milling and Self-Propagating High-Temperature Synthesis of Al-TiB2 Composites
    Matveev, Alexey
    Zhukov, Ilya
    Ziatdinov, Mansur
    Zhukov, Alexander
    MATERIALS, 2020, 13 (05)