The Convergence of Euler-Maruyama Method of Differential Equations

被引:0
|
作者
Xu, Shanshan [1 ,2 ]
Wang, Lin [1 ,2 ]
Wang, Wenqiang [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order Caputo fractional derivative; Stochastic differential equations; Euler-Maruyama method; convergence; multiplicative noise; VARIABLE-ORDER; NUMERICAL-SOLUTION; EXISTENCE;
D O I
10.4208/aamm.OA-2021-0222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the existence and uniqueness theorem of the solution of nonlinear variable-order fractional stochastic differential equations (VFS-DEs). We futher constructe the Euler-Maruyama method to solve the equations and prove the convergence in mean and the strong convergence of the method. In par-ticular, when the fractional order is no longer varying, the conclusions obtained are consistent with the relevant conclusions in the existing literature. Finally, the numeri-cal experiments at the end of the article verify the correctness of the theoretical results obtained.
引用
收藏
页码:852 / 879
页数:28
相关论文
共 50 条
  • [41] Euler-Maruyama scheme for Caputo stochastic fractional differential equations
    Doan, T. S.
    Huong, P. T.
    Kloeden, P. E.
    Vu, A. M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
  • [42] The modified truncated Euler-Maruyama method for stochastic differential equations with concave diffusion coefficients
    Tang, Yiyi
    Mao, Xuerong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [43] Exponential stability of the Euler-Maruyama method for neutral stochastic functional differential equations with jumps
    Mo, Haoyi
    Li, Mengling
    Deng, Feiqi
    Mao, Xuerong
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (07)
  • [44] STRONG CONVERGENCE FOR EULER-MARUYAMA AND MILSTEIN SCHEMES WITH ASYMPTOTIC METHOD
    Tanaka, Hideyuki
    Yamada, Toshihiro
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (02)
  • [45] An Euler-Maruyama method and its fast implementation for multiterm fractional stochastic differential equations
    Huang, Jianfei
    Huo, Zhenyang
    Zhang, Jingna
    Tang, Yifa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 1556 - 1573
  • [46] Exponential stability of the Euler-Maruyama method for neutral stochastic functional differential equations with jumps
    Haoyi Mo
    Mengling Li
    Feiqi Deng
    Xuerong Mao
    Science China Information Sciences, 2018, 61
  • [47] Erratum to: An adaptive weak continuous Euler-Maruyama method for stochastic delay differential equations
    B. Akhtari
    E. Babolian
    A. Foroush Bastani
    Numerical Algorithms, 2015, 69 : 471 - 472
  • [48] Exponential stability of the Euler-Maruyama method for neutral stochastic functional differential equations with jumps
    Haoyi MO
    Mengling LI
    Feiqi DENG
    Xuerong MAO
    Science China(Information Sciences), 2018, 61 (07) : 146 - 160
  • [49] The improvement of the truncated Euler-Maruyama method for non-Lipschitz stochastic differential equations
    Zhan, Weijun
    Li, Yuyuan
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
  • [50] Euler-Maruyama methods for Caputo tempered fractional stochastic differential equations
    Huang, Jianfei
    Shao, Linxin
    Liu, Jiahui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (9-10) : 1113 - 1131