Molecular Configuration Engineering in Hole-Transporting Materials toward Efficient and Stable Perovskite Solar Cells

被引:26
|
作者
Tang, Rong [1 ]
Liu, Haitao [2 ]
Xu, Yining [1 ]
Chen, Kaixing [1 ]
Zhang, Jin [1 ]
Zhang, Ping [1 ]
Zhong, Cheng [3 ]
Wu, Fei [1 ]
Zhu, Linna [1 ]
机构
[1] Southwest Univ, Chongqing Key Lab Adv Mat & Technol Clean Energy, Sch Mat & Energy, Chongqing 400715, Peoples R China
[2] Henan Acad Sci, Inst Chem, Zhengzhou 450002, Peoples R China
[3] Wuhan Univ, Hubei Key Lab Organ & Polymer Optoelect Mat, Dept Chem, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
benzil; defect passivation; hole transport materials; molecular configurations; perovskite solar cells; PERFORMANCE;
D O I
10.1002/adfm.202208859
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of hole-transporting materials (HTMs) that can passivate defects in perovskite is of great significance in improving the efficiency and long-term stability of perovskite solar cells. To date, the investigation on HTMs mainly focus on exploring new structures, while molecular configuration is seldomly concerned. In this work, two small molecules are developed as HTMs with benzil and phenanthrene quinone as the core structure, respectively. With similar structure and the same defect passivation groups, whereas, the two molecules exhibit different configurations, thus distinct properties. Compared to 3,6-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)phenanthrene-9,10-dione (PQ) with a rigid core structure, the benzil group in 1,2-bis(4-(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)phenyl)ethane-1,2-dione (DB) is flexible and can adjust molecular configuration to efficiently interact with the underlying perovskite material, which is confirmed from both experimental results and theoretical simulations. The DB-based device exhibits a high power conversion efficiency of 22.21% with excellent long-term stability, superior to the PQ-based device (20.22%). This work demonstrates that molecular configuration engineering will directly affect the properties of hole transport materials, as well as their interactions with perovskite, which should also be taken into consideration when devising HTMs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Planar starburst hole-transporting materials for highly efficient perovskite solar cells
    Ma, Xing-Juan
    Zhu, Xiang-Dong
    Wang, Kai-Li
    Igbari, Femi
    Yuan, Yi
    Zhang, Yue
    Gao, Chun-Hong
    Jiang, Zuo-Quan
    Wang, Zhao-Kui
    Liao, Liang-Sheng
    NANO ENERGY, 2019, 63
  • [22] Backbone Engineering Enables Highly Efficient Polymer Hole-Transporting Materials for Inverted Perovskite Solar Cells
    Wu, Xin
    Gao, Danpeng
    Sun, Xianglang
    Zhang, Shoufeng
    Wang, Qi
    Li, Bo
    Li, Zhen
    Qin, Minchao
    Jiang, Xiaofen
    Zhang, Chunlei
    Li, Zhuo
    Lu, Xinhui
    Li, Nan
    Xiao, Shuang
    Zhong, Xiaoyan
    Yang, Shangfeng
    Li, Zhong'an
    Zhu, Zonglong
    ADVANCED MATERIALS, 2023, 35 (12)
  • [23] Dopant Engineering for Spiro-OMeTAD Hole-Transporting Materials towards Efficient Perovskite Solar Cells
    Seo, Ji-Youn
    Akin, Seckin
    Zalibera, Michal
    Preciado, Marco A. Ruiz
    Kim, Hui-Seon
    Zakeeruddin, Shaik M.
    Millc, Jovana, V
    Graetzel, Michael
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (45)
  • [24] Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells
    Shao, Jiang-Yang
    Zhong, Yu-Wu
    CHEMICAL PHYSICS REVIEWS, 2021, 2 (02):
  • [25] Molecular engineering of dibenzo-heterocyclic core based hole-transporting materials for perovskite solar cells
    Yang, Yajie
    Zhai, Mengde
    Wang, Haoxin
    Chen, Cheng
    Xia, Ziyang
    Liu, Chengyang
    Tian, Yi
    Cheng, Ming
    CHINESE CHEMICAL LETTERS, 2025, 36 (05)
  • [26] Dopant-free and low-cost molecular "bee'' hole-transporting materials for efficient and stable perovskite solar cells
    Liu, Xicheng
    Zhang, Fei
    Liu, Zhe
    Xiao, Yin
    Wang, Shirong
    Li, Xianggao
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (44) : 11429 - 11435
  • [27] Molecular Engineering of Copper Phthalocyanines: A Strategy in Developing Dopant-Free Hole-Transporting Materials for Efficient and Ambient-Stable Perovskite Solar Cells
    Jiang, Xiaoqing
    Wang, Dongping
    Yu, Ze
    Ma, Wanying
    Li, Hai-Bei
    Yang, Xichuan
    Liu, Feng
    Hagfeldt, Anders
    Sun, Licheng
    ADVANCED ENERGY MATERIALS, 2019, 9 (04)
  • [28] Multifunctional Iron-Porphyrin Additive for Hole-Transporting Layer Toward Efficient and Stable Perovskite Solar Cells
    Guo, Minghuang
    Liu, Chensi
    Wu, Chenchen
    Zhu, Jingwei
    Hu, Ping
    Li, Yafeng
    Li, Junming
    Wei, Mingdeng
    SOLAR RRL, 2024, 8 (08)
  • [29] A dopant-free hole-transporting material for efficient and stable perovskite solar cells
    Liu, Jian
    Wu, Yongzhen
    Qin, Chuanjiang
    Yang, Xudong
    Yasuda, Takeshi
    Islam, Ashraful
    Zhang, Kun
    Peng, Wenqin
    Chen, Wei
    Han, Liyuan
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 2963 - 2967
  • [30] Corannulene-based hole-transporting material for efficient and stable perovskite solar cells
    An, Ming-Wei
    Wu, Bao-Shan
    Wang, Shun
    Chen, Zuo-Chang
    Su, Yin
    Deng, Lin-Long
    Li, Shu-Hui
    Nan, Zi-Ang
    Tian, Han-Rui
    Liu, Xiao-Lin
    Yun, Da-Qin
    Zhang, Qianyan
    Xie, Su-Yuan
    Zheng, Lan-Sun
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (12):