Removal of heavy metals from polluted aqueous media using berry leaf

被引:7
|
作者
Mangood, Ahmed H. [1 ]
Abdelfattah, Ibrahim [2 ]
El-Saied, Fathy A. [1 ]
Mansour, Mostafa Z. [1 ]
机构
[1] Menoufia Univ, Fac Sci, Chem Dept, Shibin Al Kawm, Egypt
[2] Natl Res Ctr, Water Pollut Res Dept, Giza, Egypt
关键词
Adsorption; heavy metals; kinetic; optimum parameters; pseudo – second – order; wastewater; HEALTH-RISK ASSESSMENT; WASTE-WATER; ADSORPTION; BIOSORPTION; EQUILIBRIUM; BIOSORBENT; IONS; CD(II); ADSORBENT; CADMIUM;
D O I
10.1080/03067319.2021.1928102
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The routine of low-cost adsorbents derived from plant or agricultural by-products as a substitute for expensive traditional removal methods of heavy metal from discarded streams has been investigated. The effectiveness of powder's mulberry leaves in extracting Pb2+, Ni2+, Cu2+, and Co2+ from an aqueous solution by batch adsorption at lab ambient temperature (25 +/- 0.4 degrees C) was investigated in this report. The impact of pH, contact time, biosorbent dosage, and preliminary concentration of metal ions on the exclusion percentage were investigated in experiments. The findings demonstrated that the elimination of metal ions by mulberry leaves powder was influenced by all adsorption parameters. At pH = 6 and 7, the maximum removal of Ni2+, Pb2+, Cu2+, and Co2+ occurred. The obtained data were subjected to two different isotherm models Langmuir and Freundlich. The models of Pb2+, Ni2+, and Co2+ results all complement the Langmuir isotherm well (R-2 = 0.99). However, the Freundlich isotherm was found to match Cu2+ adsorption with (R-2 = 0.98). For Pb2+, Cu2+, Ni2+, and Co2+, the maximum monolayer adsorption potential was found to be 0.50, 2.88,1.14, and 1.15 mg/g, respectively. A sample of real industrial wastewater was collected and treated with mulberry leaf powder. The findings illustrate that mulberry leaves powder has a 69, 85, and 100% performance in removing Pb2+, Cu2+, Zn2+, ions, respectively. The findings of different treatments; synthetic and real wastewater, suggest that mulberry leaves powder may be applied as a low-cost alternative to more expensive heavy metal adsorbents. The pseudo-second-order kinetic model was applied to fit the model and describe the adsorption mechanism.
引用
收藏
页码:4450 / 4466
页数:17
相关论文
共 50 条
  • [31] Removal of heavy metals from aqueous solution by sawdust adsorption
    BULUT Yasemin
    TEZ Zeki
    Journal of Environmental Sciences, 2007, (02) : 160 - 166
  • [32] Crab shell for the removal of heavy metals from aqueous solution
    An, HK
    Park, BY
    Kim, DS
    WATER RESEARCH, 2001, 35 (15) : 3551 - 3556
  • [33] Advances on Heavy Metals Removal from Aqueous Solution by Algae
    Zhi Tiantian
    Cheng Lihua
    Xu Xinhua
    Zhang Lin
    Chen Huanlin
    PROGRESS IN CHEMISTRY, 2011, 23 (08) : 1782 - 1794
  • [34] Removal of Heavy Metals From Aqueous By Thephosphate Dihydrate Dicalcium
    Hmimou, J.
    Rifi, E. H.
    Lebkiri, A.
    Chafki, L.
    Ebn Touhami, M.
    Galai, M.
    Hatim, Z.
    MOROCCAN JOURNAL OF CHEMISTRY, 2015, 3 (01): : 74 - 82
  • [35] Removal of heavy metals from aqueous solution by apple residues
    Lee, SH
    Jung, CH
    Chung, H
    Lee, MY
    Yang, JW
    PROCESS BIOCHEMISTRY, 1998, 33 (02) : 205 - 211
  • [36] Removal of heavy metals from aqueous solution by sawdust adsorption
    Bulut, Yasemin
    Tez, Zeki
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2007, 19 (02) : 160 - 166
  • [37] Green Nanoengineered Keratin Derived Bio-Adsorbent for Heavy Metals Removal from Aqueous Media
    Zubair, Muhammad
    Roopesh, M. S.
    Ullah, Aman
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (02):
  • [38] Hydrophobic deep eutectic solvents characterization and performance for efficient removal of heavy metals from aqueous media
    Majidi, Elham
    Bakhshi, Hamid
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 57
  • [39] Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf
    Tomar, Vaishali
    Prasad, Surendra
    Kumar, Dinesh
    MICROCHEMICAL JOURNAL, 2014, 112 : 97 - 103
  • [40] Removal of Heavy Metals from Urban Stormwater Runoff Using Bioretention Media Mix
    Wang, Jianlong
    Zhao, Yuanling
    Yang, Liqiong
    Tu, Nannan
    Xi, Guangpeng
    Fang, Xing
    WATER, 2017, 9 (11)