Cesàro q-Difference Sequence Spaces and Spectrum of Weighted q-Difference Operator

被引:0
|
作者
Yaying, Taja [1 ]
Hazarika, Bipan [2 ]
Baliarsingh, Pinakadhar [3 ]
Mursaleen, Mohammad [4 ,5 ]
机构
[1] Dera Natung Govt Coll, Dept Math, Itanagar 791113, Arunachal Prade, India
[2] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
[3] KIT, Inst Math & Applicat, Bhubaneswar 751029, Odisha, India
[4] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Weighted q-difference operator; Ces & agrave; ro sequence spaces; Duals<middle dot>Matrix transformations; Spectrum; FINE SPECTRUM; DELTA; C(0);
D O I
10.1007/s41980-024-00862-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research paper, we undertake an investigation into Ces & agrave;ro q-difference sequence spaces X(C delta;q 1 ), where X is an element of {infinity, c, c0}. These spaces are generated using the matrix C delta,q 1 , which is a product of the Ces & agrave;ro matrix C1 of the first-order and the second-order q-difference operator del 2 q defined by (del q(2) f)k = fk - (1 + q)fk-1 + qfk-2, (k is an element of N-0), where q is an element of (0, 1) and fk = 0 for k < 0. Our endeavor includes the establishment of significant inclusion relationships, the determination of bases for these spaces, the investigation of their alpha-, beta-, and gamma -duals, and the formulation of characterization results pertaining to matrix classes (X, Y), with X chosen from the set {infinity(C delta;q 1 ), c(C delta;q 1 ), c0(C delta;q 1 )} and Y chosen from the set {l(infinity), c, c(0), 1}. The final section of our study is dedicated to the meticulous spectral analysis of the weighted q-difference operator del q(2;z) over the space c0 of null sequences.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] q-difference equations.
    Jackson, FH
    AMERICAN JOURNAL OF MATHEMATICS, 1910, 32 : 305 - 314
  • [32] q-Fractional calculus for Rubin's q-difference operator
    Mansour, Zeinab S. I.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [33] Fractional q-Difference Equations
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 223 - 270
  • [34] Linear q-difference equations
    Abu Risha, M. H.
    Annaby, M. H.
    Ismail, M. E. H.
    Mansour, Z. S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (04): : 481 - 494
  • [35] ON PROPERTIES OF q-DIFFERENCE EQUATIONS
    Zheng Xiumin
    Chen Zongxuan
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 724 - 734
  • [36] SOLUTION OF Q-DIFFERENCE EQUATIONS
    YANG, KW
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 : 1 - 4
  • [37] A q-difference version of the ε-algorithm
    He, Yi
    Hu, Xing-Biao
    Tam, Hon-Wah
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (09)
  • [38] ON PROPERTIES OF q-DIFFERENCE EQUATIONS
    郑秀敏
    陈宗煊
    Acta Mathematica Scientia, 2012, 32 (02) : 724 - 734
  • [39] Value distribution of difference and q-difference polynomials
    Nan Li
    Lianzhong Yang
    Advances in Difference Equations, 2013
  • [40] ON EXISTENCE THEOREMS FOR DIFFERENCE AND Q-DIFFERENCE EQUATIONS
    TAUBER, S
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (03): : 278 - &