Unbounded periodic constant mean curvature graphs on calibrable Cheeger Serrin domains

被引:0
|
作者
Minlend, Ignace Aristide [1 ]
机构
[1] Univ Douala, Fac Econ & Appl Management, Dept Quantitat Tech, BP 2701, Douala, Cameroon
关键词
Overdetermined problems; Cheeger sets; Calibrable sets; Serrin domains; Mean curvature; EXISTENCE; SETS;
D O I
10.1007/s00013-023-01960-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a general result characterizing a specific class of Serrin domains as supports of unbounded and periodic constant mean curvature graphs. We apply this result to prove the existence of a family of unbounded periodic constant mean curvature graphs, each supported by a Serrin domain and intersecting its boundary orthogonally, up to a translation. We also show that the underlying Serrin domains are calibrable and Cheeger in a suitable sense, and they solve the 1-Laplacian equation.
引用
收藏
页码:319 / 329
页数:11
相关论文
共 50 条
  • [21] Triply periodic constant mean curvature surfaces
    Meeks, William H., III
    Tinaglia, Giuseppe
    ADVANCES IN MATHEMATICS, 2018, 335 : 809 - 837
  • [22] Radial graphs over domains of with prescribed mean curvature
    Caldiroli, Paolo
    Gullino, Giovanni
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 13 (01) : 151 - 161
  • [23] Existence of constant mean curvature graphs in hyperbolic space
    López, R
    Montiel, S
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (02) : 177 - 190
  • [24] Radial Graphs with Constant Mean Curvature in the Hyperbolic Space
    Jorge Herbert S. De Lira
    Geometriae Dedicata, 2002, 93 : 11 - 23
  • [25] Discrete constant mean curvature surfaces on general graphs
    Tim Hoffmann
    Shimpei Kobayashi
    Zi Ye
    Geometriae Dedicata, 2022, 216
  • [26] Radial graphs with constant mean curvature in the hyperbolic space
    de Lira, JHS
    GEOMETRIAE DEDICATA, 2002, 93 (01) : 11 - 23
  • [27] Entire bounded constant mean curvature Killing graphs
    Dajczer, Marcos
    de Lira, Jorge H. S.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (01): : 219 - 227
  • [28] Existence of constant mean curvature graphs in hyperbolic space
    Rafael López
    Sebastián Montiel
    Calculus of Variations and Partial Differential Equations, 1999, 8 : 177 - 190
  • [29] Discrete constant mean curvature surfaces on general graphs
    Hoffmann, Tim
    Kobayashi, Shimpei
    Ye, Zi
    GEOMETRIAE DEDICATA, 2022, 216 (06)
  • [30] A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature
    Farina, Alberto
    Valdinoci, Enrico
    ADVANCES IN MATHEMATICS, 2010, 225 (05) : 2808 - 2827