Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization

被引:13
|
作者
Vincent, Amala Mary [1 ]
Parthasarathy, K. S. S. [2 ]
Jidesh, P. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Room 2-6, Mangalore 575025, Karnataka, India
[2] Natl Inst Technol Karnataka, Dept Water Resources & Ocean Engn, Mangalore 575025, Karnataka, India
关键词
Flood susceptibility mapping; AutoML; Convolutional neural network; HPO; Bayesian optimization; Kerala; SPATIAL PREDICTION; REGION; RISK; INUNDATION; IMAGERY; MODELS; AREAS; BASIN; CITY;
D O I
10.1016/j.asoc.2023.110846
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood susceptibility mapping in Kerala, India. In particular, we used a three-dimensional convolutional neural network (CNN) architecture for this purpose. The CNN model was assisted with hyperparameter opti-mization techniques that combine Bayesian optimization with evolutionary algorithms like differential evolution and covariance matrix adaptation evolutionary strategies. The performances of all models are compared in terms of cross-entropy loss, accuracy, precision, recall, area under the curve (AUC) and kappa score. The CNN model shows better performance than the AutoML models. Evolutionary algorithm-assisted hyperparameter optimization methods improved the efficiency of the CNN model by 4 and 9 percent in terms of accuracy and by 0.0265 and 0.0497 with reference to the AUC score.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Landslide Susceptibility Mapping with Deep Learning Algorithms
    Habumugisha, Jules Maurice
    Chen, Ningsheng
    Rahman, Mahfuzur
    Islam, Md Monirul
    Ahmad, Hilal
    Elbeltagi, Ahmed
    Sharma, Gitika
    Liza, Sharmina Naznin
    Dewan, Ashraf
    SUSTAINABILITY, 2022, 14 (03)
  • [12] Integrating Harris Hawks optimization and TensorFlow deep learning for flash flood susceptibility mapping using geospatial data
    Tinh, Le Duc
    Thao, Do Thi Phuong
    Bui, Dieu Tien
    Trong, Nguyen Gia
    EARTH SCIENCE INFORMATICS, 2024, 17 (04) : 3397 - 3412
  • [13] Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling
    Janizadeh, Saeid
    Vafakhah, Mehdi
    Kapelan, Zoran
    Dinan, Naghmeh Mobarghaee
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 8273 - 8292
  • [14] Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics
    Tani, Laurits
    Rand, Diana
    Veelken, Christian
    Kadastik, Mario
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):
  • [15] Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics
    Laurits Tani
    Diana Rand
    Christian Veelken
    Mario Kadastik
    The European Physical Journal C, 2021, 81
  • [16] MetaGen: A framework for metaheuristic development and hyperparameter optimization in machine and deep learning
    Gutierrez-aviles, David
    Jimenez-navarro, Manuel Jesus
    Torres, Jose Francisco
    Martinez-Alvarez, Francisco
    NEUROCOMPUTING, 2025, 637
  • [17] Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping
    Quang-Thanh Bui
    Quoc-Huy Nguyen
    Xuan Linh Nguyen
    Vu Dong Pham
    Huu Duy Nguyen
    Van-Manh Pham
    JOURNAL OF HYDROLOGY, 2020, 581
  • [18] Landslide Susceptibility Assessment Using an AutoML Framework
    Bruzon, Adrian G.
    Arrogante-Funes, Patricia
    Arrogante-Funes, Fatima
    Martin-Gonzalez, Fidel
    Novillo, Carlos J.
    Fernandez, Ruben R.
    Vazquez-Jimenez, Rene
    Alarcon-Paredes, Antonio
    Alonso-Silverio, Gustavo A.
    Cantu-Ramirez, Claudia A.
    Ramos-Bernal, Rocio N.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (20)
  • [19] Flood susceptibility mapping using meta-heuristic algorithms
    Arabameri, Alireza
    Danesh, Amir Seyed
    Santosh, M.
    Cerda, Artemi
    Pal, Subodh Chandra
    Ghorbanzadeh, Omid
    Roy, Paramita
    Chowdhuri, Indrajit
    GEOMATICS NATURAL HAZARDS & RISK, 2022, 13 (01) : 949 - 974
  • [20] Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?
    Binh Thai Pham
    Chinh Luu
    Tran Van Phong
    Phan Trong Trinh
    Shirzadi, Ataollah
    Renoud, Somayeh
    Asadi, Shahrokh
    Hiep Van Le
    von Meding, Jason
    Clague, John J.
    JOURNAL OF HYDROLOGY, 2021, 592