Cubic fourfold;
Fano scheme;
Second type locus;
Invariants;
VARIETY;
LINES;
D O I:
10.1007/s40879-023-00651-y
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For a general cubic fourfold X subset of P-5 with Fano variety F, we compute the Hodge numbers of the locus S subset of F of lines of second type and the class of the locus V subset of F of triple lines, using the description of the latter in terms of flag varieties. We also give an upper bound of 6 for the degree of irrationality of the Fano scheme of lines of any smooth cubic hypersurface.
机构:
Institut de Recherche Mathématique Avancée, CNRS -Université de StrasbourgInstitut de Recherche Mathématique Avancée, CNRS -Université de Strasbourg
机构:
Univ Warwick, Math Dept, Zeeman Bldg, Coventry CV4 7AL, W Midlands, EnglandUniv Warwick, Math Dept, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
Bohning, Christian
von Bothmer, Hans-Christian Graf
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, GermanyUniv Warwick, Math Dept, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
von Bothmer, Hans-Christian Graf
Sosna, Pawel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, GermanyUniv Warwick, Math Dept, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England