On some invariants of cubic fourfolds

被引:0
|
作者
Gounelas, Frank [1 ]
Kouvidakis, Alexis [2 ]
机构
[1] Georg August Univ Gottingen, Fak Math & Informat, Bunsen Str 3 5, D-37073 Gottingen, Germany
[2] Univ Crete, Dept Math & Appl Math, Iraklion 70013, Greece
关键词
Cubic fourfold; Fano scheme; Second type locus; Invariants; VARIETY; LINES;
D O I
10.1007/s40879-023-00651-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a general cubic fourfold X subset of P-5 with Fano variety F, we compute the Hodge numbers of the locus S subset of F of lines of second type and the class of the locus V subset of F of triple lines, using the description of the latter in terms of flag varieties. We also give an upper bound of 6 for the degree of irrationality of the Fano scheme of lines of any smooth cubic hypersurface.
引用
收藏
页数:16
相关论文
共 50 条