Computer vision-based approach for skeleton-based action recognition, SAHC

被引:1
|
作者
Shujah Islam, M. [1 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Al Hufuf 31982, Al Ahsa, Saudi Arabia
关键词
Computer vision; Machine learning; Skeleton-based action recognition; Human action recognition; Artificial intelligence;
D O I
10.1007/s11760-023-02829-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given their small size and low weight, skeleton sequences are a great option for joint-based action detection. Recent skeleton-based action recognition techniques use feature extraction from 3D joint coordinates as per spatial-temporal signals, fusing these exemplifications in a motion context to improve identification accuracy. High accuracy has been achieved with the use of first- and second-order characteristics, such as spatial, angular, and hough representations. In contrast to the and hough transform, which are useful for encoding summarized independent joint coordinates motion, the spatial, and angular features all higher-order representations are discussed in this article for encoding the static and velocity domains of 3D joints. When used to represent relative motion between body parts in the human body, the encoding is effective and remains constant across a wide range of individual body sizes. However, many models still become confused when presented with activities that have a similar trajectory. Suggest addressing these problems by integrating spatial, angular, and hough encoding as relevant order elements into contemporary systems to more accurately reflect the interdependencies between components. By combining these widely-used spatial-temporal characteristics into a single framework SAHC, acquired state-of-the-art performance on four different benchmark datasets with fewer parameters and less batch processing.
引用
收藏
页码:1343 / 1354
页数:12
相关论文
共 50 条
  • [21] Bootstrapped Representation Learning for Skeleton-Based Action Recognition
    Moliner, Olivier
    Huang, Sangxia
    Astrom, Kalle
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4153 - 4163
  • [22] Convolutional relation network for skeleton-based action recognition
    Zhu, Jiagang
    Zou, Wei
    Zhu, Zheng
    Hu, Yiming
    NEUROCOMPUTING, 2019, 370 : 109 - 117
  • [23] A Novel Skeleton Spatial Pyramid Model for Skeleton-based Action Recognition
    Li, Yanshan
    Guo, Tianyu
    Xia, Rongjie
    Liu, Xing
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 16 - 20
  • [24] SKELETON-BASED INTERPOLATION APPROACH WITH MOTION GENERATION FOR ACTION RECOGNITION ON DIVERSE OCCLUSIONS
    Yun, Hechen
    Kageyama, Yoichi
    Ishizawa, Chikako
    Kato, Nobuhiko
    Igarashi, Ken
    Kawamoto, Ken
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2024, 20 (05): : 1301 - 1317
  • [25] SKELETON-BASED ACTION RECOGNITION WITH CONVOLUTIONAL NEURAL NETWORKS
    Li, Chao
    Zhong, Qiaoyong
    Xie, Di
    Pu, Shiliang
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [26] A Spatiotemporal Fusion Network For Skeleton-Based Action Recognition
    Bao, Wenxia
    Wang, Junyi
    Yang, Xianjun
    Chen, Hemu
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 347 - 352
  • [27] Memory Attention Networks for Skeleton-Based Action Recognition
    Li, Ce
    Xie, Chunyu
    Zhang, Baochang
    Han, Jungong
    Zhen, Xiantong
    Chen, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4800 - 4814
  • [28] SkeleTR: Towards Skeleton-based Action Recognition in the Wild
    Duan, Haodong
    Xu, Mingze
    Shuai, Bing
    Modolo, Davide
    Tu, Zhuowen
    Tighe, Joseph
    Bergamo, Alessandro
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13588 - 13598
  • [29] Memory Attention Networks for Skeleton-based Action Recognition
    Xie, Chunyu
    Li, Ce
    Zhang, Baochang
    Chen, Chen
    Han, Jungong
    Liu, Jianzhuang
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 1639 - 1645
  • [30] SKELETON-BASED ACTION RECOGNITION USING LSTM AND CNN
    Li, Chuankun
    Wang, Pichao
    Wang, Shuang
    Hou, Yonghong
    Li, Wanqing
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,