English-Assamese neural machine translation using prior alignment and pre-trained language model

被引:9
|
作者
Laskar, Sahinur Rahman [1 ]
Paul, Bishwaraj [1 ]
Dadure, Pankaj [2 ]
Manna, Riyanka [3 ]
Pakray, Partha [1 ]
Bandyopadhyay, Sivaji [1 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Silchar 788010, Assam, India
[2] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun 248007, Uttarakhand, India
[3] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
来源
关键词
Low-resource; NMT; English-Assamese; Alignment; Language model;
D O I
10.1016/j.csl.2023.101524
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a multilingual country like India, automatic natural language translation plays a key role in building a community with different linguistic people. Many researchers have explored and improved the translation process for high-resource languages such as English, German, etc., and achieved state-of-the-art results. However, the unavailability of adequate data is the prime obstacle to automatic natural language translation of low-resource north-eastern Indian languages such as Mizo, Khasi, and Assamese. Though the recent past has witnessed a deluge in several automatic natural language translation systems for low-resource languages, the low values of their evaluation measures indicate the scope for improvement. In the recent past, the neural machine translation approach has significantly improved translation quality, and the credit goes to the availability of a huge amount of data. Subsequently, the neural machine translation approach for low-resource language is underrepresented due to the unavailability of adequate data. In this work, we have considered a low-resource English-Assamese pair using the transformer-based neural machine translation, which leverages the use of prior alignment and a pre-trained language model. To extract alignment information from the source-target sentences, we have used the pre-trained multilingual contextual embeddings-based alignment technique. Also, the transformer-based language model is built using monolingual target sentences. With the use of both prior alignment and a pre-trained language model, the transformer-based neural machine translation model shows improvement, and we have achieved state-of-the-art results for the English-to-Assamese and Assamese-to-English translation, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] CommitBERT: Commit Message Generation Using Pre-Trained Programming Language Model
    Jung, Tae-Hwan
    NLP4PROG 2021: THE 1ST WORKSHOP ON NATURAL LANGUAGE PROCESSING FOR PROGRAMMING (NLP4PROG 2021), 2021, : 26 - 33
  • [42] CommitBERT: Commit message generation using pre-trained programming language model
    Jung, Tae-Hwan
    arXiv, 2021,
  • [43] Incorporating emoji sentiment information into a pre-trained language model for Chinese and English sentiment analysis
    Huang, Jiaming
    Li, Xianyong
    Li, Qizhi
    Du, Yajun
    Fan, Yongquan
    Chen, Xiaoliang
    Huang, Dong
    Wang, Shumin
    Li, Xianyong
    INTELLIGENT DATA ANALYSIS, 2024, 28 (06) : 1601 - 1625
  • [44] Classifying informative tweets using feature enhanced pre-trained language model
    Yandrapati, Prakash Babu
    Eswari, R.
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [45] Using Pre-trained Language Model to Enhance Active Learning for Sentence Matching
    Bai, Guirong
    He, Shizhu
    Liu, Kang
    Zhao, Jun
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2022, 21 (02)
  • [46] Enhancing Language Generation with Effective Checkpoints of Pre-trained Language Model
    Park, Jeonghyeok
    Zhao, Hai
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2686 - 2694
  • [47] Attribute Alignment: Controlling Text Generation from Pre-trained Language Models
    Yu, Dian
    Yu, Zhou
    Sagae, Kenji
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 2251 - 2268
  • [48] BSTC: A Fake Review Detection Model Based on a Pre-Trained Language Model and Convolutional Neural Network
    Lu, Junwen
    Zhan, Xintao
    Liu, Guanfeng
    Zhan, Xinrong
    Deng, Xiaolong
    ELECTRONICS, 2023, 12 (10)
  • [49] A Sentence Quality Evaluation Framework for Machine Reading Comprehension Incorporating Pre-trained Language Model
    Meng, Fan-Jun
    He, Ji-Fei
    Xu, Xing-Jian
    Zhao, Ya-Juan
    Sun, Li-Jun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 443 - 455
  • [50] SsciBERT: a pre-trained language model for social science texts
    Si Shen
    Jiangfeng Liu
    Litao Lin
    Ying Huang
    Lin Zhang
    Chang Liu
    Yutong Feng
    Dongbo Wang
    Scientometrics, 2023, 128 : 1241 - 1263