A NEW FINITE ELEMENT SPACE FOR EXPANDED MIXED FINITE ELEMENT METHOD

被引:0
|
作者
Chen, Jing [1 ]
Zhou, Zhaojie [2 ]
Chen, Huanzhen [2 ]
Wang, Hong [3 ]
机构
[1] Shandong Normal Univ, Sch Econ, Jinan 250014, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
[3] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 05期
基金
美国国家科学基金会;
关键词
New finite element space; Expanded mixed finite element; Minimum degrees of freedom; The inf-sup condition; Solvability; Optimal convergence; GENERALIZED FORCHHEIMER FLOWS;
D O I
10.4208/jcm.2112-m2021-0204
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose a new finite element space ?h for the expanded mixed finite element method (EMFEM) for second-order elliptic problems to guarantee its com-puting capability and reduce the computation cost. The new finite element space ?h is designed in such a way that the strong requirement Vh subset of ?h in [9] is weakened to {vh is an element of Vh; divvh = 0} subset of ?h so that it needs fewer degrees of freedom than its classical counterpart. Furthermore, the new ?h coupled with the Raviart-Thomas space satisfies the inf-sup condition, which is crucial to the computation of mixed methods for its close relation to the behavior of the smallest nonzero eigenvalue of the stiff matrix, and thus the existence, uniqueness and optimal approximate capability of the EMFEM solution are proved for rectangular partitions in Rd, d = 2, 3 and for triangular partitions in R2. Also, the solvability of the EMFEM for triangular partition in R3 can be directly proved without the inf-sup condition. Numerical experiments are conducted to confirm these theoretical findings.
引用
收藏
页码:817 / 841
页数:25
相关论文
共 50 条
  • [31] An iterative method for mixed finite element schemes
    A. P. Gogin
    M. M. Karchevsky
    Lobachevskii Journal of Mathematics, 2012, 33 (4) : 400 - 404
  • [32] On splitting schemes in the mixed finite element method
    K. V. Voronin
    Yu. M. Laevsky
    Numerical Analysis and Applications, 2012, 5 (2) : 150 - 155
  • [33] A multipoint flux mixed finite element method
    Wheeler, Mary F.
    Yotov, Ivan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2082 - 2106
  • [34] AN OPTIMAL ADAPTIVE MIXED FINITE ELEMENT METHOD
    Carstensen, Carsten
    Rabus, Hella
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 649 - 667
  • [35] A multiscale mortar mixed finite element method
    Arbogast, Todd
    Pencheva, Gergina
    Wheeler, Mary F.
    Yotov, Ivan
    MULTISCALE MODELING & SIMULATION, 2007, 6 (01): : 319 - 346
  • [36] An Iterative Method for Mixed Finite Element Schemes
    Gogin, A. P.
    Karchevsky, M. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (04) : 400 - 404
  • [37] A mixed finite element method for the arch problem
    Benlemlih, A
    El Ferricha, ME
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (01) : 17 - 36
  • [38] Mixed finite element beam propagation method
    Schulz, D
    Glingener, C
    Bludszuweit, M
    Voges, E
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (07) : 1336 - 1342
  • [39] A Mixed Finite Element Method for Elasticity Problem
    Elakkad, A.
    Bennani, M. A.
    Mekkaoui, J. E. L.
    Elkhalfi, A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2013, 4 (02) : 161 - 166
  • [40] A mixed finite element method for a Ladyzhenskaya model
    Farhloul, M
    Zine, AM
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (39-40) : 4497 - 4510