Image-to-Height Domain Translation for Synthetic Aperture Sonar

被引:2
|
作者
Stewart, Dylan [1 ]
Kreulach, Austin [1 ]
Johnson, Shawn F. F. [2 ]
Zare, Alina [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Penn State Univ, Appl Res Lab, State Coll, PA 16801 USA
关键词
Synthetic aperture sonar; Sonar; Estimation; Data models; Apertures; Sensors; Sea surface; Bathymetry; circular Synthetic Aperture Sonar (cSAS); conditional Generative Adversarial Network (cGAN); domain translation; Gaussian Markov random field (GMRF); pix2pix; SAS; UNet; RECONSTRUCTION;
D O I
10.1109/TGRS.2023.3236473
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Synthetic aperture sonar (SAS) intensity statistics are dependent upon the sensing geometry at the time of capture. Estimating bathymetry from acoustic surveys is challenging. While several methods have been proposed to estimate seabed relief via intensity, we develop the first large-scale study that relies on deep learning models. In this work, we pose bathymetric estimation from SAS surveys as a domain translation problem of translating intensity to height. Since no dataset of coregistered seabed relief maps and sonar imagery previously existed to learn this domain translation, we produce the first large simulated dataset containing coregistered pairs of seabed relief and intensity maps from two unique sonar data simulation techniques. We apply four types of models, with varying complexity, to translate intensity imagery to seabed relief: a shape-from-shading (SFS) approach, a Gaussian Markov random field (GMRF) approach, a conditional Generative Adversarial Network (cGAN), and UNet architectures. Each model is applied to datasets containing sand ripples, rocky, mixed, and flat sea bottoms. Methods are compared in reference to the coregistered simulated datasets using L1 error. Additionally, we provide results on simulated and real SAS imagery. Our results indicate that the proposed UNet architectures outperform an SFS, a GMRF, and a pix2pix cGAN model.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] IMAGE-QUALITY PREDICTION OF SYNTHETIC APERTURE SONAR IMAGERY
    Williams, David P.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2114 - 2117
  • [22] A Learnable Image Compression Scheme for Synthetic Aperture Sonar Imagery
    Gerg, Isaac D.
    Monga, Vishal
    OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [23] An introduction to Synthetic Aperture Sonar
    Marx, D
    Nelson, M
    Chang, E
    Gillespie, W
    Putney, A
    Warman, K
    PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 717 - 721
  • [24] Synthetic aperture sonar on AUV
    Fernandez, JE
    Christoff, JT
    Cook, DA
    OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 1718 - 1722
  • [25] Introduction to synthetic aperture sonar
    Marx, David
    Nelson, Matt
    Chang, Enson
    Gillespie, Walt
    Putney, Angela
    Warman, Kieffer
    IEEE Signal Processing Workshop on Statistical Signal and Array Processing, SSAP, 2000, : 717 - 721
  • [26] A quantitative analysis of synthetic aperture sonar image distortion according to sonar platform motion parameters
    Kim, Sea-Moon
    Byun, Sung-Hoon
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2021, 40 (04): : 382 - 390
  • [27] Modeling the effect of random roughness on synthetic aperture sonar image statistics
    Lyons, Anthony P.
    Olson, Derek R.
    Hansen, Roy E.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 152 (03): : 1363 - 1374
  • [28] A Fast and Exact Seabed Image Reconstruction Algorithm of Synthetic Aperture Sonar
    Ji Xia
    Cong Weihua
    Zhou Lisheng
    2016 IEEE/OES CHINA OCEAN ACOUSTICS SYMPOSIUM (COA), 2016,
  • [29] Image coordinate correction of multiple-receiver synthetic aperture sonar
    Ma M.
    Tang J.
    Zhong H.
    Tian Z.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (01): : 80 - 85
  • [30] Synthetic Aperture Sonar Track Registration Using SIFT Image Correspondences
    Wang, Victor T.
    Hayes, Michael P.
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2017, 42 (04) : 901 - 913