Optimized Non-Surjective FAIDs for 5G LDPC Codes With Learnable Quantization

被引:1
|
作者
Lyu, Yanchen [1 ]
Jiang, Ming [1 ,2 ]
Zhang, Yifan [1 ]
Zhao, Chunming [1 ,2 ]
Hu, Nan [3 ]
Xu, Xiaodong [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
[3] China Mobile Res Inst, Inst Wireless & Terminal Technol, Beijing 100053, Peoples R China
关键词
Decoding; Quantization (signal); Table lookup; 5G mobile communication; Iterative decoding; Artificial neural networks; Training; Non-surjective finite alphabet iterative decoders; low-density parity-check codes; recurrent quantized neural networks; ALPHABET ITERATIVE DECODERS;
D O I
10.1109/LCOMM.2023.3341081
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter proposes a novel approach for designing non-surjective (NS) finite alphabet iterative decoders (FAIDs) for quasi-cyclic low-density parity-check (LDPC) codes, especially 5G LDPC codes. We employ recurrent quantized neural networks to optimize the look-up tables used in NS-FAIDs, the design of which is the kernel of FAIDs. During the optimization of LUTs, the quantized message alphabets and quantization thresholds are jointly designed. To cope with the untrainable problem of quantization thresholds in the existing neural-network-based linear FAIDs, we use softmax distribution to soften the implied one-hot distribution of quantization thresholds, making it trainable in the neural network. The proposed decoders offer enhanced universality compared to existing neural network-based linear FAIDs, making them directly applicable to 5G LDPC codes with support for 2-bit quantization over the additive white Gaussian noise channel. Additionally, they significantly outperform the original NS-FAID in terms of performance.
引用
收藏
页码:253 / 257
页数:5
相关论文
共 50 条
  • [31] High Area-Efficient Parallel Encoder with Compatible Architecture for 5G LDPC Codes
    Zhu, Yufei
    Xing, Zuocheng
    Li, Zerun
    Zhang, Yang
    Hu, Yifan
    SYMMETRY-BASEL, 2021, 13 (04):
  • [32] A New Technique for Incorporating RLL Properties into 5G LDPC Codes Without Additional Redundancy
    Peter Farkaš
    Martin Rakús
    Tomáš Páleník
    Wireless Personal Communications, 2021, 119 : 749 - 762
  • [33] A New Technique for Incorporating RLL Properties into 5G LDPC Codes Without Additional Redundancy
    Farkas, Peter
    Rakus, Martin
    Palenik, Tomas
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 119 (01) : 749 - 762
  • [34] Design of High-Performance and Area-Efficient Decoder for 5G LDPC Codes
    Cui, Hangxuan
    Ghaffari, Fakhreddine
    Le, Khoa
    Declercq, David
    Lin, Jun
    Wang, Zhongfeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (02) : 879 - 891
  • [35] Flexible 5G New Radio LDPC Encoder Optimized for High Hardware Usage Efficiency
    Petrovic, Vladimir L.
    El Mezeni, Dragomir M.
    Radosevic, Andreja
    ELECTRONICS, 2021, 10 (09)
  • [36] Development of 5G LDPC Experimental Kit
    Srisupha, Thanat
    Mueadkhunthod, Krittiyapom
    Phakphisut, Watid
    Khittiwitchayakul, Sirawit
    Puntsri, Kidsanapong
    Sopon, Thanomsak
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 856 - 859
  • [37] A Novel Base Graph Based Static Scheduling Scheme for Layered Decoding of 5G LDPC Codes
    Tian, Kuangda
    Wang, Hao
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (07) : 1450 - 1453
  • [38] Algebra-Assisted Construction of Quasi-Cyclic LDPC Codes for 5G New Radio
    Li, Huaan
    Bai, Baoming
    Mu, Xijin
    Zhang, Ji
    Xu, Hengzhou
    IEEE ACCESS, 2018, 6 : 50229 - 50244
  • [39] Decoding Rate-Compatible 5G-LDPC Codes With Coarse Quantization Using the Information Bottleneck Method
    Stark, Maximilian
    Wang, Linfang
    Bauch, Gerhard
    Wesel, Richard D.
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 : 646 - 660
  • [40] LDPC design for 5G NR URLLC & mMTC
    Li, Liguang
    Xu, Jun
    Xu, Jin
    Hu, Liujun
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 1071 - 1076