Comparison of high-throughput single-cell RNA-seq methods for ex vivo drug screening

被引:2
|
作者
Gezelius, Henrik [1 ,2 ]
Enblad, Anna Pia [1 ,2 ,3 ]
Lundmark, Anders [1 ,2 ]
Aberg, Martin [1 ,2 ,4 ]
Blom, Kristin [1 ,2 ,4 ]
Rudfeldt, Jakob [1 ,2 ,4 ]
Raine, Amanda [1 ,2 ]
Harila, Arja [3 ]
Rendo, Veronica [5 ]
Heinaniemi, Merja [6 ]
Andersson, Claes [1 ,2 ,4 ]
Nordlund, Jessica [1 ,2 ]
机构
[1] Uppsala Univ, Dept Med Sci, S-75185 Uppsala, Sweden
[2] Uppsala Univ, Sci Life Lab, S-75185 Uppsala, Sweden
[3] Uppsala Univ, Dept Womens & Childrens Hlth, S-75185 Uppsala, Sweden
[4] Uppsala Univ Hosp, Dept Clin Chem & Pharmacol, S-75185 Uppsala, Sweden
[5] Uppsala Univ, Dept Immunol Genet & Pathol, S-75185 Uppsala, Sweden
[6] Univ Eastern Finland, Sch Med, Kuopio 70210, Finland
基金
瑞典研究理事会;
关键词
ACUTE LYMPHOBLASTIC-LEUKEMIA; SENSITIVITY; RESISTANCE;
D O I
10.1093/nargab/lqae001
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Functional precision medicine (FPM) aims to optimize patient-specific drug selection based on the unique characteristics of their cancer cells. Recent advancements in high throughput ex vivo drug profiling have accelerated interest in FPM. Here, we present a proof-of-concept study for an integrated experimental system that incorporates ex vivo treatment response with a single-cell gene expression output enabling barcoding of several drug conditions in one single-cell sequencing experiment. We demonstrate this through a proof-of-concept investigation focusing on the glucocorticoid-resistant acute lymphoblastic leukemia (ALL) E/R+ Reh cell line. Three different single-cell transcriptome sequencing (scRNA-seq) approaches were evaluated, each exhibiting high cell recovery and accurate tagging of distinct drug conditions. Notably, our comprehensive analysis revealed variations in library complexity, sensitivity (gene detection), and differential gene expression detection across the methods. Despite these differences, we identified a substantial transcriptional response to fludarabine, a highly relevant drug for treating high-risk ALL, which was consistently recapitulated by all three methods. These findings highlight the potential of our integrated approach for studying drug responses at the single-cell level and emphasize the importance of method selection in scRNA-seq studies. Finally, our data encompassing 27 327 cells are freely available to extend to future scRNA-seq methodological comparisons.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics
    Rotem, Assaf
    Ram, Oren
    Shoresh, Noam
    Sperling, Ralph A.
    Schnall-Levin, Michael
    Zhang, Huidan
    Basu, Anindita
    Bernstein, Bradley E.
    Weitz, David A.
    PLOS ONE, 2015, 10 (05):
  • [22] Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations
    Mariona Nadal-Ribelles
    Saiful Islam
    Wu Wei
    Pablo Latorre
    Michelle Nguyen
    Eulàlia de Nadal
    Francesc Posas
    Lars M. Steinmetz
    Nature Microbiology, 2019, 4 : 683 - 692
  • [23] A comprehensive comparison of supervised and unsupervised methods for cell type identification in single-cell RNA-seq
    Sun, Xiaobo
    Lin, Xiaochu
    Li, Ziyi
    Wu, Hao
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [24] Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
    Chazarra-Gil, Ruben
    van Dongen, Stijn
    Kiselev, Vladimir Yu
    Hemberg, Martin
    NUCLEIC ACIDS RESEARCH, 2021, 49 (07)
  • [25] scDrug: From single-cell RNA-seq to drug response prediction
    Hsieh, Chiao-Yu
    Wen, Jian-Hung
    Lin, Shih-Ming
    Tseng, Tzu-Yang
    Huang, Jia-Hsin
    Huang, Hsuan-Cheng
    Juan, Hsueh-Fen
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 150 - 157
  • [26] A multiplex single-cell RNA-Seq pharmacotranscriptomics pipeline for drug discovery
    Dini, Alice
    Barker, Harlan
    Piki, Emilia
    Sharma, Subodh
    Raivola, Juuli
    Murumagi, Astrid
    Ungureanu, Daniela
    NATURE CHEMICAL BIOLOGY, 2025, 21 (03) : 432 - 442
  • [27] A scalable high-throughput method for RNA-Seq analysis of thousands of single cells
    Watson, L.
    Taylor, K.
    Frenz, L.
    Greiner, D.
    Lebofsky, R.
    Do, D.
    Priyadarshini, P.
    Chen, P.
    Zhang, B.
    Ma, M.
    Pattamatta, P.
    Javier, L.
    Mopas, J.
    Chew, J.
    Cater, S.
    Wong-Ho, E.
    Schlesinger, F.
    Khrebukova, I.
    Patel, J.
    Lin, C.
    Tsai, J.
    Montel, V.
    Kellogg, M.
    Hartnett, A.
    Yunghans, A.
    Agresti, J.
    Schroth, G. P.
    MOLECULAR BIOLOGY OF THE CELL, 2016, 27
  • [28] Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods
    Ryu, Yeonjae
    Han, Geun Hee
    Jung, Eunsoo
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 106 - 119
  • [29] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    FRONTIERS IN GENETICS, 2020, 11
  • [30] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482