Surface modulation for highly efficient and stable perovskite solar cells

被引:5
|
作者
Bai, Dongliang [1 ]
Zheng, Dexu [3 ]
Yang, Shaoan [2 ]
Yu, Fengyang [2 ]
Zhu, Xuejie [1 ]
Peng, Lei [3 ]
Wang, Likun [2 ]
Liu, Jishuang [3 ]
Yang, Dong [2 ]
Liu, Shengzhong [1 ,2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Minist Educ,Shaanxi Key Lab Adv Energy Devices,Sha, Xian 710119, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[3] China Natl Nucl Power Co Ltd, Beijing 100097, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRON-TRANSPORT LAYER; PASSIVATION; METAL;
D O I
10.1039/d3ra00809f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Defects formed by halide ion escape and wettability of the perovskite absorber are essential limiting factors in achieving high performance of perovskite solar cells (PSCs). Herein, a series of ionic organic modulators are designed to contain halide anions to prevent defect formation and improve the surface tension of the perovskite absorber. It was found that the surface modulator containing Br anions is the most effective one due to its capability in bonding with the undercoordinated Pb2+ ions to reduce charge recombination. Moreover, this surface modulator effectively creates a suitable energy level between the perovskite and hole transport layer to promote carrier transfer. In addition, the surface modulator forms a chemisorbed capping layer on the perovskite surface to improve its hydrophobicity. As a result, the efficiency of PSCs based on surface modulators containing Br anion enhances to 23.32% from 21.08% of the control device. The efficiency of unencapsulated PSCs with a surface modulator retains 75.42% of its initial value under about 35% humidity stored in the air for 28 days, while the control device only maintained 44.49% of its initial efficiency. The excellent stability originates from the hydrophobic perovskite surface after capping the surface modulator. As halogen is found to affect both passivation and hydrophobicity ability, a series of ionic organic modulators are designed to contain the halide anions not only to prevent defect formation but also to improve surface tension of the perovskite absorber.
引用
收藏
页码:28097 / 28103
页数:7
相关论文
共 50 条
  • [31] Regulating perovskite/PCBM interface for highly efficient and stable inverted perovskite solar cells
    Gu, Wei-Min
    Zhao, Mingming
    Wang, Qing
    Gong, Kun
    Li, Xuli
    Sun, Yan
    Sun, Shaojing
    Yang, Guang
    Hu, Chunming
    Jiang, Ke-Jian
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [32] NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhang, Bingjuan
    Su, Jie
    Guo, Xing
    Zhou, Long
    Lin, Zhenhua
    Feng, Liping
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    ADVANCED SCIENCE, 2020, 7 (11)
  • [33] Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells
    Hanmandlu, Chintam
    Singh, Anupriya
    Boopathi, Karunakara Moorthy
    Lai, Chao-Sung
    Chu, Chih-Wei
    REPORTS ON PROGRESS IN PHYSICS, 2020, 83 (08)
  • [34] Efficient and stable of perovskite solar cells
    Jiang, Qi
    Zhang, Xingwang
    You, Jingbi
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,
  • [35] Surface passivation by multifunctional carbon dots toward highly efficient and stable inverted perovskite solar cells
    Qi Cao
    Yixin Zhang
    Xingyu Pu
    Junsong Zhao
    Tong Wang
    Kui Zhang
    Hui Chen
    Xilai He
    Jiabao Yang
    Cheng Zhang
    Xuanhua Li
    Journal of Energy Chemistry , 2023, (11) : 9 - 15
  • [36] Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride
    Yang, Bo
    Lin, Pu-An
    Zhou, Tingwei
    Zheng, Xiaojia
    Cai, Bing
    Zhang, Wen-Hua
    CHINESE CHEMICAL LETTERS, 2024, 35 (10)
  • [37] Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride
    Bo Yang
    PuAn Lin
    Tingwei Zhou
    Xiaojia Zheng
    Bing Cai
    WenHua Zhang
    Chinese Chemical Letters, 2024, 35 (10) : 543 - 549
  • [38] Surface passivation by multifunctional carbon dots toward highly efficient and stable inverted perovskite solar cells
    Cao, Qi
    Zhang, Yixin
    Pu, Xingyu
    Zhao, Junsong
    Wang, Tong
    Zhang, Kui
    Chen, Hui
    He, Xilai
    Yang, Jiabao
    Zhang, Cheng
    Li, Xuanhua
    JOURNAL OF ENERGY CHEMISTRY, 2023, 86 : 9 - 15
  • [39] Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed-Cation Surface Modulation
    Wang, Xue
    Zhang, Dong
    Liu, Baoze
    Wu, Xin
    Jiang, Xiaofen
    Zhang, Shoufeng
    Wang, Yan
    Gao, Danpeng
    Wang, Lina
    Wang, Haolin
    Huang, Zongming
    Xie, Xiangfan
    Chen, Tao
    Xiao, Zhengguo
    He, Qiyuan
    Xiao, Shuang
    Zhu, Zonglong
    Yang, Shangfeng
    ADVANCED MATERIALS, 2023, 35 (49)
  • [40] Reconstructing the amorphous and defective surface for efficient and stable perovskite solar cells
    Xie, Jiangsheng
    Zhao, Shenghe
    Hang, Pengjie
    Chen, Tian
    Wen, Bin
    Yin, Qixin
    Wei, Shichen
    Zhu, Shengcai
    Yu, Xuegong
    Qin, Minchao
    Lu, Xinhui
    Yan, Keyou
    Xu, Jianbin
    Gao, Pingqi
    SCIENCE CHINA-MATERIALS, 2023, 66 (04) : 1323 - 1331