Effects of Si, B doping on PC3 monolayer as anode for Na-ion batteries

被引:0
|
作者
Liu, Lu [1 ]
Guan, Xiaopeng [1 ]
Zhong, Xiangli [1 ]
Wang, Jinbin [1 ]
Zou, Daifeng [2 ]
Cheng, Juanjuan [2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Low Dimens Mat & Applicat Technol, Minist Educ, Xiangtan 411105, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Mat Sci & Engn, Dept Phys & Elect Sci, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
Adsorption properties; Si-doped PC 3; B-Doped PC 3; First-principles calculations; Na -ion batteries; PHOSPHORUS CARBIDE MONOLAYER; PROMISING ANODE; DOPED GRAPHENE; AB-INITIO; ELECTRODE MATERIALS; LITHIUM ABSORPTION; CARBON NANOTUBES; HIGH-CAPACITY; ENERGY; BORON;
D O I
10.1016/j.physe.2023.115742
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional phosphorus carbides are predicted to be promising anode materials for Na-ion batteries due to their high theoretical capacity, low diffusion barrier, low volume expansion rate and excellent electronic conductivity. However, previous theoretical calculations show that most phosphorus carbides have weak adsorption for Na atoms, which may lead to the fact that Na atoms are prone to aggregate to form Na dendrites during the charging and discharging process. Here, the effects of Si and B doping on the structural stability, and the adsorption and diffusion behaviors of Na atom of PC3 were investigated using first-principles calculations. The results show that single Si and B atom doping has more negative formation energy at the P site. Si and B doping enhances the adsorption properties of PC3 for Na atom, and the maximum adsorption energy of Na on the Sidoped system is decreased to -1.87 eV. B-doped PC3 monolayer has more Na atom adsorption sites than the undoped ones. Therefore, it can be concluded that Si and B doping is a feasible way to improve the weak Na adsorption in the PC3 monolayer. This work provides guidance for improving the electrochemical performance of phosphorus carbides.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Prediction of a flexible anode material for Li/Na ion batteries: Phosphorous carbide monolayer (α-PC)
    Qi, Siyun
    Li, Feng
    Wang, Junru
    Qu, Yuanyuan
    Yang, Yanmei
    Li, Weifeng
    Zhao, Mingwen
    CARBON, 2019, 141 : 444 - 450
  • [22] TiNX (X = F, Cl) monolayer as potential anode materials for Li/Na-ion batteries applications
    Wang, Mengke
    Wu, Ya
    Sun, Shoutian
    Ye, Xiang
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [23] High-performance anode materials for Na-ion batteries
    Cheng, De-Liang
    Yang, Li-Chun
    Zhu, Min
    RARE METALS, 2018, 37 (03) : 167 - 180
  • [24] High-performance anode materials for Na-ion batteries
    De-Liang Cheng
    Li-Chun Yang
    Min Zhu
    Rare Metals, 2018, 37 : 167 - 180
  • [25] Current advancement on anode materials for Na-ion batteries: Review
    Saritha, D.
    Sandeep, C. H.
    Sujithra, R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 3022 - 3026
  • [26] High-performance anode materials for Na-ion batteries
    De-Liang Cheng
    Li-Chun Yang
    Min Zhu
    RareMetals, 2018, 37 (03) : 167 - 180
  • [27] Mesoporous carbon with large pores as anode for Na-ion batteries
    Liu, Jian
    Liu, Hao
    Yang, Tianyu
    Wang, Guoxiu
    Tade, Moses O.
    CHINESE SCIENCE BULLETIN, 2014, 59 (18): : 2186 - 2190
  • [28] Tin Phosphide as a Promising Anode Material for Na-Ion Batteries
    Kim, Youngjin
    Kim, Yongil
    Choi, Aram
    Woo, Sangwon
    Mok, Duckgyun
    Choi, Nam-Soon
    Jung, Yoon Seok
    Ryu, Ji Heon
    Oh, Seung M.
    Lee, Kyu Tae
    ADVANCED MATERIALS, 2014, 26 (24) : 4139 - 4144
  • [29] Porous CuO nanowires as the anode of rechargeable Na-ion batteries
    Wang, Lijiang
    Zhang, Kai
    Hu, Zhe
    Duan, Wenchao
    Cheng, Fangyi
    Chen, Jun
    NANO RESEARCH, 2014, 7 (02) : 199 - 208
  • [30] Mesoporous carbon with large pores as anode for Na-ion batteries
    Jian Liu
    Hao Liu
    Tianyu Yang
    Guoxiu Wang
    Moses O.Tade
    Chinese Science Bulletin, 2014, 59 (18) : 2186 - 2190