Machine-learning atomic simulation for heterogeneous catalysis

被引:37
|
作者
Chen, Dongxiao [1 ]
Shang, Cheng [1 ,2 ]
Liu, Zhi-Pan [1 ,2 ,3 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Key Lab Computat Phys Sci, Shanghai Key Lab Mol Catalysis & Innovat Mat,Dept, Shanghai 200433, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Synthet & Self Assembly Chem Organ Funct M, Shanghai 200032, Peoples R China
基金
美国国家科学基金会;
关键词
SURFACE WALKING METHOD; DENSITY-FUNCTIONAL THEORY; STRUCTURE PREDICTION; GLOBAL OPTIMIZATION; TRANSITION-STATE; ETHYLENE EPOXIDATION; CRYSTAL-STRUCTURE; AMMONIA-SYNTHESIS; PHASE-TRANSITION; CO OXIDATION;
D O I
10.1038/s41524-022-00959-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous catalysis is at the heart of chemistry. New theoretical methods based on machine learning (ML) techniques that emerged in recent years provide a new avenue to disclose the structures and reaction in complex catalytic systems. Here we review briefly the history of atomic simulations in catalysis and then focus on the recent trend shifting toward ML potential calculations. The advanced methods developed by our group are outlined to illustrate how complex structures and reaction networks can be resolved using the ML potential in combination with efficient global optimization methods. The future of atomic simulation in catalysis is outlooked.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Atomic potential energy uncertainty in machine-learning interatomic potentials and thermal transport in solids with atomic diffusion
    Zhu, Yifan
    Dong, Erting
    Yang, Hongliang
    Xi, Lili
    Yang, Jiong
    Zhang, Wenqing
    PHYSICAL REVIEW B, 2023, 108 (01)
  • [42] HETEROGENEOUS CATALYSIS AT AN ATOMIC-SCALE
    SACHTLER, WMH
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1995, 99 (11): : 1295 - 1305
  • [43] Machine-learning micropattern manufacturing
    Wang, Si
    Shen, Ziao
    Shen, Zhenyu
    Dong, Yuanjun
    Li, Yanran
    Cao, Yuxin
    Zhang, Yanmei
    Guo, Shengshi
    Shuai, Jianwei
    Yang, Yun
    Lin, Changjian
    Chen, Xun
    Zhang, Xingcai
    Huang, Qiaoling
    NANO TODAY, 2021, 38
  • [44] Machine-learning with Cellular Automata
    Povalej, P
    Kokol, P
    Druzovec, TW
    Stiglic, B
    ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 305 - 315
  • [45] Machine-learning competition announced
    Erickson, J
    DR DOBBS JOURNAL, 1997, 22 (05): : 16 - 16
  • [46] Certified Machine-Learning Models
    Damiani, Ernesto
    Ardagna, Claudio A.
    SOFSEM 2020: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2020, 12011 : 3 - 15
  • [47] Database for machine-learning research
    Lemonick, Sam
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (44) : 9 - 9
  • [48] Machine-learning for osteoarthritis research
    Kluzek, S.
    Matteiz, T. A.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 (07) : 977 - 978
  • [49] Machine-learning the string landscape
    He, Yang-Hui
    PHYSICS LETTERS B, 2017, 774 : 564 - 568
  • [50] DaDianNao: A Machine-Learning Supercomputer
    Chen, Yunji
    Luo, Tao
    Liu, Shaoli
    Zhang, Shijin
    He, Liqiang
    Wang, Jia
    Li, Ling
    Chen, Tianshi
    Xu, Zhiwei
    Sun, Ninghui
    Temam, Olivier
    2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, : 609 - 622