Machine-learning atomic simulation for heterogeneous catalysis

被引:37
|
作者
Chen, Dongxiao [1 ]
Shang, Cheng [1 ,2 ]
Liu, Zhi-Pan [1 ,2 ,3 ]
机构
[1] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Key Lab Computat Phys Sci, Shanghai Key Lab Mol Catalysis & Innovat Mat,Dept, Shanghai 200433, Peoples R China
[2] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Synthet & Self Assembly Chem Organ Funct M, Shanghai 200032, Peoples R China
基金
美国国家科学基金会;
关键词
SURFACE WALKING METHOD; DENSITY-FUNCTIONAL THEORY; STRUCTURE PREDICTION; GLOBAL OPTIMIZATION; TRANSITION-STATE; ETHYLENE EPOXIDATION; CRYSTAL-STRUCTURE; AMMONIA-SYNTHESIS; PHASE-TRANSITION; CO OXIDATION;
D O I
10.1038/s41524-022-00959-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous catalysis is at the heart of chemistry. New theoretical methods based on machine learning (ML) techniques that emerged in recent years provide a new avenue to disclose the structures and reaction in complex catalytic systems. Here we review briefly the history of atomic simulations in catalysis and then focus on the recent trend shifting toward ML potential calculations. The advanced methods developed by our group are outlined to illustrate how complex structures and reaction networks can be resolved using the ML potential in combination with efficient global optimization methods. The future of atomic simulation in catalysis is outlooked.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Machine-learning atomic simulation for heterogeneous catalysis
    Dongxiao Chen
    Cheng Shang
    Zhi-Pan Liu
    npj Computational Materials, 9
  • [2] Machine Learning for Atomic Simulation and Activity Prediction in Heterogeneous Catalysis: Current Status and Future
    Ma, Sicong
    Liu, Zhi-Pan
    ACS CATALYSIS, 2020, 10 (22): : 13213 - 13226
  • [3] Machine Learning Potentials for Heterogeneous Catalysis
    Omranpour, Amir
    Elsner, Jan
    Lausch, K. Nikolas
    Behler, Jorg
    ACS CATALYSIS, 2025, 15 (03): : 1616 - 1634
  • [4] Machine Learning for Computational Heterogeneous Catalysis
    Lamoureux, Philomena Schlexer
    Winther, Kirsten T.
    Torres, Jose Antonio Garrido
    Streibel, Verena
    Zhao, Meng
    Bajdich, Michal
    Abild-Pedersen, Frank
    Bligaard, Thomas
    CHEMCATCHEM, 2019, 11 (16) : 3579 - 3599
  • [5] Machine-learning frameworks in molecular simulation
    Kitchin, John
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [6] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (60)
  • [7] Machine-Learning in Simulation-Driven Optimization
    Tenne, Yoel
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, : 32 - 36
  • [8] Heterogeneous treatment effect analysis based on machine-learning methodology
    Gong, Xiajing
    Hu, Meng
    Basu, Mahashweta
    Zhao, Liang
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2021, 10 (11): : 1433 - 1443
  • [9] Interpretable machine learning for knowledge generation in heterogeneous catalysis
    Esterhuizen, Jacques A.
    Goldsmith, Bryan R.
    Linic, Suljo
    NATURE CATALYSIS, 2022, 5 (03) : 175 - 184
  • [10] Interpretable machine learning for knowledge generation in heterogeneous catalysis
    Jacques A. Esterhuizen
    Bryan R. Goldsmith
    Suljo Linic
    Nature Catalysis, 2022, 5 : 175 - 184