Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

被引:5
|
作者
Wang, Xiang [1 ]
Zhang, Lin-Jie [1 ]
Ning, Jie [1 ]
Na, Suck-Joo [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
LWD; CFD; liquid bridge transfer; fluid dynamics; wedge transition zone; PLUME ATTENUATION; CFD SIMULATIONS; BEAM; TRANSITION; DYNAMICS; FLOW;
D O I
10.1089/3dp.2021.0159
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A 3D numerical model of heat transfer and fluid flow of molten pool in the process of laser wire deposition was presented by computational fluid dynamics technique. The simulation results of the deposition morphology were also compared with the experimental results under the condition of liquid bridge transfer mode. Moreover, they showed a good agreement. Considering the effect of recoil pressure, the morphology of the deposit metal obtained by the simulation was similar to the experiment result. Molten metal at the wire tip was peeled off and flowed into the molten pool, and then spread to both sides of the deposition layer under the recoil pressure. In addition, the results of simulation and high-speed charge-coupled device presented that a wedge transition zone, with a length of similar to 6 mm, was formed behind the keyhole in the liquid bridge transfer process, where the height of deposited metal decreased gradually. After solidification, metal in the transition zone retained the original melt morphology, resulting in a decrease in the height of the tail of the deposition layer.
引用
收藏
页码:661 / 673
页数:13
相关论文
共 50 条
  • [21] SIMULATION OF NUCLEATION AND GRAIN GROWTH IN SELECTIVE LASER MELTING OF TI-6AL-4V ALLOY
    Liu, Dehao
    Wang, Yan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 1, 2020,
  • [22] LASER-SURFACE MODIFICATION OF TI-6AL-4V ALLOY
    AKGUN, OV
    INAL, OT
    JOURNAL OF MATERIALS SCIENCE, 1994, 29 (05) : 1159 - 1168
  • [23] Microstructure and superplasticity of laser welded Ti-6Al-4V alloy
    Cheng, Donghai
    Huang, Jihua
    Zhao, Xingke
    Zhang, Hua
    MATERIALS & DESIGN, 2010, 31 (01): : 620 - 623
  • [24] SURFACE CRACKING OF LASER MELTED Ti-6Al-4V ALLOY
    Zielinski, A.
    Dziadon, A.
    Serbinski, W.
    Jazdzewska, M.
    ADVANCES IN MATERIALS SCIENCE, 2008, 8 (02): : 94 - 102
  • [25] Laser melting of plasma nitrided Ti-6Al-4V alloy
    Yilbas, BS
    Nickel, J
    Coban, A
    Sami, M
    Shuja, SZ
    Aleem, A
    WEAR, 1997, 212 (01) : 140 - 149
  • [26] Ti-6Al-4V Alloy Modification by Laser Interference Lithography
    Liu, Qi
    Li, Wenjun
    Cao, Liang
    Wang, Jiajia
    Qu, Yingmin
    Wang, Xinyue
    Yan, Jin
    Wang, Zuobin
    Liang, Bojian
    Di, Xu
    Qiu, Rongxian
    2016 6TH IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (IEEE 3M-NANO), 2016, : 366 - 370
  • [27] Studies on laser forming of Ti-6Al-4V alloy sheet
    Chen, DJ
    Wu, SC
    Li, MQ
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 152 (01) : 62 - 65
  • [28] Laser surface nitriding of Ti-6Al-4V titanium alloy
    Masse, JE
    Mathieu, JF
    MATERIALS AND MANUFACTURING PROCESSES, 1996, 11 (02) : 207 - 214
  • [29] Influence of Laser Treatment on the Creep of the Ti-6Al-4V Alloy
    A. G. Reis
    D. A. P. Reis
    C. Moura Neto
    M. J. R. Barboza
    C. R. M. Silva
    F. Piorino Neto
    J. Oñoro
    Metallurgical and Materials Transactions A, 2011, 42 : 3031 - 3034
  • [30] Microstructural assessment of laser nitrided Ti-6Al-4V alloy
    H. Xin
    C. Hu
    T. N. Baker
    Journal of Materials Science, 2000, 35 : 3373 - 3382