Comparing Texture Analysis of Apparent Diffusion Coefficient MRI in Hepatocellular Adenoma and Hepatocellular Carcinoma

被引:0
|
作者
Abdullah, Ayoob Dinar [1 ]
Amanpour-Gharaei, Behzad [2 ]
Toosi, Mohssen Nassiri [3 ]
Delazar, Sina [4 ]
Rad, Hamidraza Saligheh [5 ]
Arian, Arvin [6 ]
机构
[1] Univ Tehran Med Sci, Technol Radiol & Radiotherapy, Tehran, Iran
[2] Univ Tehran Med Sci, Canc Inst, Canc Biol Res Ctr, Tehran, Iran
[3] Univ Tehran Med Sci, Hepatol, Tehran, Iran
[4] Univ Tehran Med Sci, Imam Khomeini Hosp, Adv Diagnost & Intervent Radiol Res Ctr, Tehran, Iran
[5] Univ Tehran Med Sci, Med Phys & Biomed Engn, Tehran, Iran
[6] Univ Tehran Med Sci, Canc Inst, Radiol, Tehran, Iran
关键词
magnetic resonance imaging; texture analysis; differential diagnosis; hepatocellular carcinoma; hepatocellular adenoma; RADIOMICS; CLASSIFICATION; DISTINGUISH; MANAGEMENT; BENIGN; TOOL;
D O I
10.7759/cureus.51443
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim: This study aimed to assess the effectiveness of using MRI-apparent diffusion coefficient (ADC) map driven radiomics to differentiate between hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) features. Materials and methods: The study involved 55 patients with liver tumors (20 with HCA and 35 with HCC), featuring 106 lesions equally distributed between hepatic carcinoma and hepatic adenoma who underwent texture analysis on ADC map MR images. The analysis identified several imaging features that significantly differed between the HCA and HCC groups. Four classification models were compared for distinguishing HCA from HCC including linear support vector machine (linear-SVM), radial basis function SVM (RBF-SVM), random forest (RF), and k-nearest neighbor (KNN). Results: The k-nearest neighbor (KNN) classifier displayed the top accuracy (0.89) and specificity (0.90). Linear-SVM and KNN classifiers showcased the leading sensitivity (0.88) for both, with the KNN classifier achieving the highest precision (0.9). In comparison, the conventional interpretation had lower sensitivity (70.1%) and specificity (77.9%). Conclusion: The study found that utilizing ADC maps for texture analysis in MR images is a viable method to differentiate HCA from HCC, yielding promising results in identified texture features.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Preliminary study of apparent diffusion coefficient assessment after ion beam therapy for hepatocellular carcinoma
    Kanamoto M.
    Miyati T.
    Terashima K.
    Suga D.
    Fuwa N.
    Radiological Physics and Technology, 2016, 9 (2) : 233 - 239
  • [22] Correlations between the minimum and mean apparent diffusion coefficient values of hepatocellular carcinoma and tumor grade
    Li, Xubin
    Zhang, Kun
    Shi, Yan
    Wang, Fengkui
    Meng, Xiangfu
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (06) : 1442 - 1447
  • [23] Predicting Response to Benzamide Riboside Chemotherapy in Hepatocellular Carcinoma Using Apparent Diffusion Coefficient of Water
    Babsky, Andriy M.
    Ju, Shenghong
    George, Beena
    Bennett, Stacy
    Huang, Mingsheng
    Jayaram, Hiremagalur N.
    McLennan, Gordon
    Bansal, Navin
    ANTICANCER RESEARCH, 2011, 31 (06) : 2045 - 2051
  • [24] Apparent Diffusion Coefficient Can Predict Therapy Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization
    Drewes, Ralph
    Heinze, Constanze
    Pech, Maciej
    Powerski, Maciej
    Woidacki, Katja
    Wienke, Andreas
    Surov, Alexey
    Omari, Jazan
    DIGESTIVE DISEASES, 2022, 40 (05) : 596 - 606
  • [25] Relationship of apparent diffusion coefficient to survival for patients with unresectable primary hepatocellular carcinoma after chemoembolization
    Dong, Sheng
    Ye, Xiao-Dan
    Yuan, Zheng
    Xu, Li-Chao
    Xiao, Xiang-Sheng
    EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (03) : 472 - 477
  • [26] One-Month Apparent Diffusion Coefficient Correlates With Response to Radiofrequency Ablation of Hepatocellular Carcinoma
    Barat, Maxime
    Fohlen, Audrey
    Cassinotto, Christophe
    Jannot, Anne Sophie
    Dautry, Raphael
    Pelage, Jean-Pierre
    Boudiaf, Mourad
    Pocard, Marc
    Eveno, Clarisse
    Taouli, Bachir
    Soyer, Philippe
    Dohan, Anthony
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (06) : 1648 - 1658
  • [27] Apparent diffusion coefficient quantification as an early imaging biomarker of response for unresectable infiltrative hepatocellular carcinoma
    Sivrioglu, Ali Kemal
    Kara, Kemal
    Kafadar, Cahit
    Mutlu, Hakan
    ABDOMINAL IMAGING, 2015, 40 (06): : 1470 - 1470
  • [28] Questionable correlation of the apparent diffusion coefficient with the histological grade and microvascular invasion in small hepatocellular carcinoma
    Kim, J. G.
    Jang, K. M.
    Min, G. S.
    Kang, T. W.
    Cha, D., I
    Ahn, S. H.
    CLINICAL RADIOLOGY, 2019, 74 (05) : 406.e19 - 406.e27
  • [29] Prognostic Significance of Apparent Diffusion Coefficient in Hepatocellular Carcinoma Patients treated with Stereotactic Ablative Radiotherapy
    Lo, Cheng-Hsiang
    Huang, Wen-Yen
    Hsiang, Chih-Weim
    Lee, Meei-Shyuan
    Lin, Chun-Shu
    Yang, Jen-Fu
    Hsu, Hsian-He
    Chang, Wei-Chou
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [30] Apparent diffusion coefficient and tissue stiffness are associated with different tumor microenvironment features of hepatocellular carcinoma
    Chen, Jie
    Wu, Zhenru
    Zhang, Zhen
    Chen, Yidi
    Yin, Meng
    Ehman, Richard L.
    Yuan, Yuan
    Song, Bin
    EUROPEAN RADIOLOGY, 2024, 34 (11) : 6980 - 6991