Comparing Texture Analysis of Apparent Diffusion Coefficient MRI in Hepatocellular Adenoma and Hepatocellular Carcinoma

被引:0
|
作者
Abdullah, Ayoob Dinar [1 ]
Amanpour-Gharaei, Behzad [2 ]
Toosi, Mohssen Nassiri [3 ]
Delazar, Sina [4 ]
Rad, Hamidraza Saligheh [5 ]
Arian, Arvin [6 ]
机构
[1] Univ Tehran Med Sci, Technol Radiol & Radiotherapy, Tehran, Iran
[2] Univ Tehran Med Sci, Canc Inst, Canc Biol Res Ctr, Tehran, Iran
[3] Univ Tehran Med Sci, Hepatol, Tehran, Iran
[4] Univ Tehran Med Sci, Imam Khomeini Hosp, Adv Diagnost & Intervent Radiol Res Ctr, Tehran, Iran
[5] Univ Tehran Med Sci, Med Phys & Biomed Engn, Tehran, Iran
[6] Univ Tehran Med Sci, Canc Inst, Radiol, Tehran, Iran
关键词
magnetic resonance imaging; texture analysis; differential diagnosis; hepatocellular carcinoma; hepatocellular adenoma; RADIOMICS; CLASSIFICATION; DISTINGUISH; MANAGEMENT; BENIGN; TOOL;
D O I
10.7759/cureus.51443
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim: This study aimed to assess the effectiveness of using MRI-apparent diffusion coefficient (ADC) map driven radiomics to differentiate between hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) features. Materials and methods: The study involved 55 patients with liver tumors (20 with HCA and 35 with HCC), featuring 106 lesions equally distributed between hepatic carcinoma and hepatic adenoma who underwent texture analysis on ADC map MR images. The analysis identified several imaging features that significantly differed between the HCA and HCC groups. Four classification models were compared for distinguishing HCA from HCC including linear support vector machine (linear-SVM), radial basis function SVM (RBF-SVM), random forest (RF), and k-nearest neighbor (KNN). Results: The k-nearest neighbor (KNN) classifier displayed the top accuracy (0.89) and specificity (0.90). Linear-SVM and KNN classifiers showcased the leading sensitivity (0.88) for both, with the KNN classifier achieving the highest precision (0.9). In comparison, the conventional interpretation had lower sensitivity (70.1%) and specificity (77.9%). Conclusion: The study found that utilizing ADC maps for texture analysis in MR images is a viable method to differentiate HCA from HCC, yielding promising results in identified texture features.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Value of MRI apparent diffusion coefficient for assessment of response to sorafenib in hepatocellular carcinoma
    Kostek, Osman
    Yilmaz, Erdem
    Hacioglu, Muhammet Bekir
    Erdogan, Bulent
    Kodaz, Hilmi
    Bekmez, Esma Turkmen
    Hacibekiroglu, Ilhan
    Uzunoglu, Sernaz
    Tuncbilek, Nermin
    Cicin, Irfan
    JOURNAL OF BUON, 2018, 23 (04): : 979 - 984
  • [2] Role of diffusion weighted mri in focal liver lesions and the role of apparent diffusion coefficient in hepatocellular carcinoma
    Sujit, Nair
    Udgirkar, Suhas
    Pawar, Vinay
    Debnath, Prasanta
    Chandnani, Sanjay
    Jain, Shubham
    Thanage, Ravi
    Junare, Parmeshwar
    Rathi, Pravin
    Contractor, Qais
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2019, 34 : 72 - 72
  • [3] The Benefit of Apparent Diffusion Coefficient in Evaluating the Invasiveness of Hepatocellular Carcinoma
    Jing, Mengyuan
    Cao, Yuntai
    Zhang, Peng
    Zhang, Bin
    Lin, Xiaoqiang
    Deng, Liangna
    Han, Tao
    Zhou, Junlin
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [4] Effect of implantation site and growth of hepatocellular carcinoma on apparent diffusion coefficient of water and sodium MRI
    Babsky, Andriy M.
    Ju, Shenghong
    Bennett, Stacy
    George, Beena
    McLennan, Gordon
    Bansal, Navin
    NMR IN BIOMEDICINE, 2012, 25 (02) : 312 - 321
  • [5] The Different MRI Features of Hepatocellular Adenoma and Hepatocellular Carcinoma
    Abdullah, Ayoob D.
    Taher, Hayder J.
    Alareer, Hayder S.
    Easa, Ahmed M.
    Dakhil, Hussein A.
    Bustan, Raad A.
    JOURNAL OF PHARMACY AND BIOALLIED SCIENCES, 2023, 15 : S1046 - S1049
  • [6] Histogram analysis of apparent diffusion coefficient predicts response to radiofrequency ablation in hepatocellular carcinoma
    Ma, Xiaohong
    Ouyang, Han
    Wang, Shuang
    Wang, Meng
    Zhou, Chunwu
    Zhao, Xinming
    CHINESE JOURNAL OF CANCER RESEARCH, 2019, 31 (02) : 366 - 374
  • [7] Histogram analysis of apparent diffusion coefficient predicts response to radiofrequency ablation in hepatocellular carcinoma
    Xiaohong Ma
    Han Ouyang
    Shuang Wang
    Meng Wang
    Chunwu Zhou
    Xinming Zhao
    ChineseJournalofCancerResearch, 2019, 31 (02) : 366 - 374
  • [8] Diagnostic Accuracy of the Apparent Diffusion Coefficient for Microvascular Invasion in Hepatocellular Carcinoma: A Meta-analysis
    Deng, Yuhui
    Li, Jisheng
    Xu, Hui
    Ren, Ahong
    Wang, Zhenchang
    Yang, Dawei
    Yang, Zhenghan
    JOURNAL OF CLINICAL AND TRANSLATIONAL HEPATOLOGY, 2022, 10 (04) : 642 - 650
  • [9] The relationship between the tumor microenvironment of hepatocellular carcinoma and apparent diffusion coefficient.
    Morine, Yuji
    Saito, Yu
    Yamada, Shinichiro
    Teraoku, Hiroki
    Miyazaki, Katsuki
    Ikemoto, Tetsuya
    Shimada, Mitsuo
    JOURNAL OF CLINICAL ONCOLOGY, 2025, 43 (4_SUPPL) : 616 - 616
  • [10] Early changes in apparent diffusion coefficient as an indicator of response to sorafenib in hepatocellular carcinoma
    Zhao, Yi-lei
    Guo, Qing-qu
    Yang, Gen-ren
    Wang, Qi-dong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2014, 15 (08): : 713 - 719