Classifying falls using out-of-distribution detection in human activity recognition

被引:0
|
作者
Roy, Debaditya [1 ,2 ]
Komini, Vangjush [1 ,2 ]
Girdzijauskas, Sarunas [1 ]
机构
[1] Royal Inst Technol KTH, Dept Elect Engn & Comp Sci EECS, Stockholm, Sweden
[2] Qamcom Res & Technol, Stockholm, Sweden
关键词
Out-of-distribution detection; uncertainty estimation; human activity recognition; deep learning; time-series classification; ANOMALY DETECTION; SMART HOME;
D O I
10.3233/AIC-220205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As the research community focuses on improving the reliability of deep learning, identifying out-of-distribution (OOD) data has become crucial. Detecting OOD inputs during test/prediction allows the model to account for discriminative features unknown to the model. This capability increases the model's reliability since this model provides a class prediction solely at incoming data similar to the training one. Although OOD detection is well-established in computer vision, it is relatively unexplored in other areas, like time series-based human activity recognition (HAR). Since uncertainty has been a critical driver for OOD in vision-based models, the same component has proven effective in time-series applications. In this work, we propose an ensemble-based temporal learning framework to address the OOD detection problem in HAR with time-series data. First, we define different types of OOD for HAR that arise from realistic scenarios. Then we apply our ensemble-based temporal learning framework incorporating uncertainty to detect OODs for the defined HAR workloads. This particular formulation also allows a novel approach to fall detection. We train our model on non-fall activities and detect falls as OOD. Our method shows state-of-the-art performance in a fall detection task using much lesser data. Furthermore, the ensemble framework outperformed the traditional deep-learning method (our baseline) on the OOD detection task across all the other chosen datasets.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [31] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [32] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [33] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [34] NeuralFP: Out-of-distribution Detection using Fingerprints of Neural Networks
    Lee, Wei-Han
    Millman, Steve
    Desai, Nirmit
    Srivatsa, Mudhakar
    Liu, Changchang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9561 - 9568
  • [35] Out-of-distribution detection for SAR imagery using ATR systems
    Hill, Charles
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXXI, 2024, 13032
  • [36] ATOM: Robustifying Out-of-Distribution Detection Using Outlier Mining
    Chen, Jiefeng
    Li, Yixuan
    Wu, Xi
    Liang, Yingyu
    Jha, Somesh
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 430 - 445
  • [37] In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation
    Bitterwolf, Julian
    Mueller, Maximilian
    Hein, Matthias
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [38] Rethinking Out-of-Distribution Detection From a Human-Centric Perspective
    Zhu, Yao
    Chen, Yuefeng
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Jiang, Rongxin
    Zheng, Bolun
    Chen, Yaowu
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (10) : 4633 - 4650
  • [39] Towards In-Distribution Compatible Out-of-Distribution Detection
    Wu, Boxi
    Jiang, Jie
    Ren, Haidong
    Du, Zifan
    Wang, Wenxiao
    Li, Zhifeng
    Cai, Deng
    He, Xiaofei
    Lin, Binbin
    Liu, Wei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10333 - 10341
  • [40] On the Impact of Spurious Correlation for Out-of-Distribution Detection
    Ming, Yifei
    Yin, Hang
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10051 - 10059