Weakly-Supervised Domain Adaptive Semantic Segmentation with Prototypical Contrastive Learning

被引:8
|
作者
Das, Anurag [1 ]
Xian, Yongqin [2 ,3 ]
Dai, Dengxin [1 ]
Schiele, Bernt [1 ]
机构
[1] MPI Informat, Saarland Informat Campus, Saarbrucken, Germany
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Google, Mountain View, CA 94043 USA
关键词
D O I
10.1109/CVPR52729.2023.01481
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There has been a lot of effort in improving the performance of unsupervised domain adaptation for semantic segmentation task, however, there is still a huge gap in performance when compared with supervised learning. In this work, we propose a common framework to use different weak labels, e.g., image, point and coarse labels from the target domain to reduce this performance gap. Specifically, we propose to learn better prototypes that are representative class features by exploiting these weak labels. We use these improved prototypes for the contrastive alignment of class features. In particular, we perform two different feature alignments: first, we align pixel features with prototypes within each domain and second, we align pixel features from the source to prototype of target domain in an asymmetric way. This asymmetric alignment is beneficial as it preserves the target features during training, which is essential when weak labels are available from the target domain. Our experiments on various benchmarks show that our framework achieves significant improvement compared to existing works and can reduce the performance gap with supervised learning. Code will be available at https://github.com/anurag-198/WDASS.
引用
收藏
页码:15434 / 15443
页数:10
相关论文
共 50 条
  • [31] Learning from the Web: Language Drives Weakly-Supervised Incremental Learning for Semantic Segmentation
    Liu, Chang
    Rizzoli, Giulia
    Zanuttigh, Pietro
    Li, Fu
    Niu, Yi
    COMPUTER VISION - ECCV 2024, PT XVII, 2025, 15075 : 352 - 369
  • [32] Learning random-walk label propagation for weakly-supervised semantic segmentation
    Vernaza, Paul
    Chandraker, Manmohan
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2953 - 2961
  • [33] CyCSNet: Learning Cycle-Consistency of Semantics for Weakly-Supervised Semantic Segmentation
    Duan, Zhikui
    Yu, Xinmei
    Ding, Yi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107A (08) : 1328 - 1337
  • [34] Transformer Based Prototype Learning for Weakly-Supervised Histopathology Tissue Semantic Segmentation
    She, Jinwen
    Hu, Yanxu
    Ma, Andy J.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IV, 2023, 14257 : 203 - 215
  • [35] Weakly-supervised Object Representation Learning for Few-shot Semantic Segmentation
    Ying, Xiaowen
    Li, Xin
    Chuah, Mooi Choo
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1496 - 1505
  • [36] A multi-strategy contrastive learning framework for weakly supervised semantic segmentation
    Yuan, Kunhao
    Schaefer, Gerald
    Lai, Yu-Kun
    Wang, Yifan
    Liu, Xiyao
    Guan, Lin
    Fang, Hui
    PATTERN RECOGNITION, 2023, 137
  • [37] Contrastive and consistent feature learning for weakly supervised object localization and semantic segmentation
    Ki, Minsong
    Uh, Youngjung
    Lee, Wonyoung
    Byun, Hyeran
    NEUROCOMPUTING, 2021, 445 : 244 - 254
  • [38] CSENet: Cascade semantic erasing network for weakly-supervised semantic segmentation
    Liu, Jiahui
    Yu, Changqian
    Yang, Beibei
    Gao, Changxin
    Sang, Nong
    NEUROCOMPUTING, 2021, 453 : 885 - 895
  • [39] Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
    Li, Yansheng
    Shi, Te
    Zhang, Yongjun
    Chen, Wei
    Wang, Zhibin
    Li, Hao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 20 - 33
  • [40] Boosted MIML method for weakly-supervised image semantic segmentation
    Liu, Yang
    Li, Zechao
    Liu, Jing
    Lu, Hanqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (02) : 543 - 559