Online Identification of Induction Machine Parameter Deviations for Aging Detection - A Comparative Study Using Recursive Least Squares Algorithm and Extended Kalman Filter

被引:0
|
作者
Nachtsheim, Martin [1 ,2 ]
Grund, Karina [1 ]
Endisch, Christian [1 ]
Kennel, Ralph [2 ]
机构
[1] Tech Hsch Ingolstadt, Inst Innovat Mobil, Ingolstadt, Germany
[2] Tech Univ Munich, Sch Engn & Design, Dept Energy & Proc Engn, Munich, Germany
来源
2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC | 2023年
关键词
Induction Machine; Online Parameter Identification; Extended Kalman Filter; Recursive Least Squares Algorithm; Aging Detection; DIAGNOSIS;
D O I
10.1109/ITEC55900.2023.10186964
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of electrical machines in automotive traction systems is rapidly increasing. To ensure operational safety, the machine behavior is monitored to detect failures or aging effects. Besides other approaches, online parameter identification is suited for real-time observation of the machine condition during operation. Two of the most established online parameter identification algorithms are the recursive least squares and the extended Kalman filter algorithm. In existing approaches the algorithms identify the absolute parameter values. In this paper the used identification models are modified to directly identify the parameter deviation related to the reference values. This results in an additional advantage in identifying operational parameter changes because nonlinear behavior is provided by the respective parameter reference. The performance of the proposed algorithms to monitor different electrical parameter changes is compared using an extended analytical induction machine model.
引用
收藏
页数:6
相关论文
共 33 条
  • [31] Parameters identification of a brushless doubly fed induction machine using pseudo-random binary signal excitation signal for recursive least squares method
    Djadi, Hammou
    Yazid, Krim
    Menaa, Mohamed
    IET ELECTRIC POWER APPLICATIONS, 2017, 11 (09) : 1585 - 1595
  • [32] Joint State of Charge and State of Health Estimation of Lithium-ion Battery Using Improved Adaptive Dual Extended Kalman Filter Based on Piecewise Forgetting Factor Recursive Least Squares
    Liang, Yawen
    Wang, Shunli
    Fan, Yongcun
    Yang, Xiao
    Xie, Yanxin
    Fernandez, Carlos
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1923 - 1927
  • [33] Collaborative state estimation of lithium-ion battery based on multi-time scale low-pass filter forgetting factor recursive least squares - double extended Kalman filtering algorithm
    Long, Tao
    Wang, Shunli
    Cao, Wen
    Ren, Pu
    He, Mingfang
    Fernandez, Carlos
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (06) : 2108 - 2127