An adaptive deep-learning load forecasting framework by integrating transformer and domain knowledge

被引:22
|
作者
Gao, Jiaxin [1 ,2 ]
Chen, Yuntian [1 ,2 ]
Hu, Wenbo [3 ]
Zhang, Dongxiao [1 ,4 ,5 ]
机构
[1] Eastern Inst Technol, Eastern Inst Adv Study, Ningbo, Zhejiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
[3] Hefei Univ Technol, Sch Comp & Informat, Hefei, Peoples R China
[4] Peng Cheng Lab, Dept Math & Theories, Shenzhen, Guangdong, Peoples R China
[5] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Load forecasting; Deep-learning; Domain knowledge; Transfer learning; Online learning; Interpretability; MODELS;
D O I
10.1016/j.adapen.2023.100142
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrical energy is essential in today's society. Accurate electrical load forecasting is beneficial for better schedul-ing of electricity generation and saving electrical energy. In this paper, we propose an adaptive deep-learning load forecasting framework by integrating Transformer and domain knowledge (Adaptive-TgDLF). Adaptive-TgDLF introduces the deep-learning model Transformer and adaptive learning methods (including transfer learning for different locations and online learning for different time periods), which captures the long-term dependency of the load series, and is more appropriate for realistic scenarios with scarce samples and variable data distributions. Under the theory-guided framework, the electrical load is divided into dimensionless trends and local fluctua-tions. The dimensionless trends are considered as the inherent pattern of the load, and the local fluctuations are considered to be determined by the external driving forces. Adaptive learning can cope with the change of load in location and time, and can make full use of load data at different locations and times to train a more efficient model. Cross-validation experiments on different districts show that Adaptive-TgDLF is approximately 16% more accurate than the previous TgDLF model and saves more than half of the training time. Adaptive-TgDLF with 50% weather noise has the same accuracy as the previous TgDLF model without noise, which proves its robustness. We also preliminarily mine the interpretability of Transformer in Adaptive-TgDLF, which may provide future potential for better theory guidance. Furthermore, experiments demonstrate that transfer learning can accelerate convergence of the model in half the number of training epochs and achieve better performance, and online learning enables the model to achieve better results on the changing load.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Short-Term Load Forecasting Based on Frequency Domain Decomposition and Deep Learning
    Zhang, Qian
    Ma, Yuan
    Li, Guoli
    Ma, Jinhui
    Ding, Jinjin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [32] Load Forecasting with Machine Learning and Deep Learning Methods
    Cordeiro-Costas, Moises
    Villanueva, Daniel
    Eguia-Oller, Pablo
    Martinez-Comesana, Miguel
    Ramos, Sergio
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [33] Toward Improved Load Forecasting in Smart Grids: A Robust Deep Ensemble Learning Framework
    Su, Heng-Yi
    Lai, Chia-Ching
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (04) : 4292 - 4296
  • [34] Deep-learning models for forecasting financial risk premia and their interpretations
    Lo, Andrew W.
    Singh, Manish
    QUANTITATIVE FINANCE, 2021,
  • [35] Causal Attention Deep-learning Model for Solar Flare Forecasting
    Zhang, Xinze
    Xu, Long
    Li, Zihan
    Huang, Xin
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 274 (02):
  • [36] Adaptive individual residential load forecasting based on deep learning and dynamic mirror descent
    Han, Fujia
    Wang, Xiaohui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [37] Deep-learning models for forecasting financial risk premia and their interpretations
    Lo, Andrew W.
    Singh, Manish
    QUANTITATIVE FINANCE, 2023, 23 (06) : 917 - 929
  • [38] Automated deep-learning model optimization framework for microcontrollers
    Hong, Seungtae
    Park, Gunju
    Kim, Jeong-Si
    ETRI JOURNAL, 2024,
  • [39] Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models
    Chen, Jiayu
    Liu, Lisang
    Guo, Kaiqi
    Liu, Shurui
    He, Dongwei
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [40] A deep-learning based diagnostic framework for Breast Cancer
    Sykiotis, Stavros
    Tzortzis, Ioannis N.
    Angeli, Aikaterini
    Doulamis, Nikolaos
    Kalogeras, Dimitrios
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2022, 2022, : 641 - 645