共 50 条
Detecting the phase transition in a strongly interacting Fermi gas by unsupervised machine learning
被引:1
|作者:
Eberz, D.
[1
]
Link, M.
[1
]
Kell, A.
[1
]
Breyer, M.
[1
]
Gao, K.
[1
,2
]
Koehl, M.
[1
]
机构:
[1] Univ Bonn, Phys Inst, Wegelerstr 8, D-53115 Bonn, Germany
[2] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
关键词:
Bose-Einstein condensation - Electron gas - Fermions - Machine learning - Temperature;
D O I:
10.1103/PhysRevA.108.063303
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
We study the critical temperature of the superfluid phase transition of strongly interacting fermions in the crossover regime between a Bardeen-Cooper-Schrieffer superconductor and a Bose-Einstein condensate of dimers. To this end, we employ the technique of unsupervised machine learning using an autoencoder neural network, which we directly apply to time -of -flight images of the fermions. We extract the critical temperature of the phase transition from trend changes in the data distribution revealed in the latent space of the autoencoder bottleneck.
引用
收藏
页数:5
相关论文