Unraveling UV Degradation Pathways in Inverted Organic Solar Cells Incorporating A-DA'D-A Type Non-Fullerene Acceptors

被引:1
|
作者
Xiao, Jingyang [1 ,2 ]
Li, Ning [2 ]
Yin, Qingwu [3 ]
Min, Yonggang [1 ]
Yip, Hin-Lap [2 ,4 ,5 ,6 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Sch Mat Sci & Engn, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[3] Peking Univ, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[4] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong 999077, Peoples R China
[5] City Univ Hong Kong, Sch Energy & Environm, Hong Kong 999077, Peoples R China
[6] City Univ Hong Kong, Hong Kong Inst Clean Energy, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
A-DA'D-A type acceptor; electron transport layer; organic solar cells; photo-stability; ELECTRON-ACCEPTOR; PERFORMANCE; STABILITY; EFFICIENT; ZNO;
D O I
10.1002/adom.202302202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Operational stability is the main obstacle to the industrial applications of organic solar cells (OSCs). In this study, different degradation mechanisms under continuous simulated solar radiation are demonstrated for high-performance non-fullerene OSCs based on commonly used electron transport materials, i.e., ZnO and SnO2. The ZnO-induced decomposition pathways of A-DA'D-A type non-fullerene acceptors (NFAs) under UV illumination are unraveled for the first time and related to N-dealkylation of pyrrole from the core moiety. In the case of SnO2, poor photo-stability is primarily ascribed to a high density of trap states, which can be diminished by surface modification to achieve better device stability that is comparable with the stability under LED illumination without UV components. With a thorough understanding of the degradation pathways, this study provides valuable guidelines for designing high-performance and stable non-fullerene OSCs. Evidence of ZnO-induced decomposition of A-DA'D-A type NFA under UV illumination is demonstrated in this work. Using SnO2 as an alternative ETL, performance degradation of OSCs is mainly ascribed to a high concentration of surface defects, which can be overcome by amine modification of the SnO2 surface. image
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Non-fullerene acceptors for organic solar cells
    Cenqi Yan
    Stephen Barlow
    Zhaohui Wang
    He Yan
    Alex K.-Y. Jen
    Seth R. Marder
    Xiaowei Zhan
    Nature Reviews Materials, 3
  • [12] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [13] Role of Near-IR Sensitive Asymmetric A-DA′D-π-A-type Non-Fullerene Acceptors for Efficient Organic Solar Cells: A Theoretical Insight
    Adnan, Muhammad
    Munir, Iqra
    Hussain, Riaz
    Irshad, Zobia
    Hussain, Riaz .
    Siddique, Sabir Ali
    Darwish, Hany W.
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2025, 24 (01): : 103 - 122
  • [14] Perylene Diimide-based Non-fullerene Acceptors With A-D-A′-D-A Architecture For Organic Solar Cells
    You, Xiaoxiao
    Shen, Hao
    Wu, Qiang
    Li, Yu
    Wu, Di
    Xia, Jianlong
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (03)
  • [15] Aromatic side chain manipulation in A-DA′D-A type acceptors for organic photovoltaics
    Wen, ChengLong
    Yuan, Jun
    Zhang, Zhiguo
    Li, Dongxu
    Zhou, Yuqian
    Liu, Wanqiang
    Zhou, Zaichun
    Li, Yungui
    Jiang, Lihui
    Zou, Yingping
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (21) : 3587 - 3595
  • [16] Development of fullerene acceptors and the application of non-fullerene acceptors in organic solar cells
    Du, Wen-Shuo
    Wang, Gong
    Li, Yun-Fei
    Yu, Yu
    FRONTIERS IN PHYSICS, 2024, 12
  • [17] Manipulating molecular aggregation and crystalline behavior of A-DA'D-A type acceptors by side chain engineering in organic solar cells
    Liu, Wei
    Zhang, Rui
    Wei, Qingya
    Zhu, Can
    Yuan, Jun
    Gao, Feng
    Zou, Yingping
    AGGREGATE, 2022, 3 (03):
  • [18] Aggregation of non-fullerene acceptors in organic solar cells
    Li, Donghui
    Zhang, Xue
    Liu, Dan
    Wang, Tao
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15607 - 15619
  • [19] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [20] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128