Editorial: Uncertainty quantification in nuclear physics

被引:1
|
作者
Piarulli, Maria [1 ]
Epelbaum, Evgeny [2 ]
Forssen, Christian [3 ]
机构
[1] Washington Univ, Phys Dept, St Louis, MO 63130 USA
[2] Ruhr Univ Bochum, Inst Theoret Phys 2, Bochum, Germany
[3] Chalmers Univ Technol, Dept Phys, Gothenburg, Sweden
来源
FRONTIERS IN PHYSICS | 2023年 / 11卷
关键词
nuclear physics; uncertainty quantification; Bayesian methods; emulators; effective field theory; ab initio; many-body physics;
D O I
10.3389/fphy.2023.1270577
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [41] EPISTEMIC UNCERTAINTY QUANTIFICATION OF FLOOR RESPONSES FOR A NUCLEAR REACTOR BUILDING
    Choi, Byunghyun
    Nishida, Akemi
    Li, Yinsheng
    Muramatsu, Ken
    Takada, Tsuyoshi
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2018, VOL 2, 2018,
  • [42] Fast uncertainty quantification of spent nuclear fuel with neural networks
    Alba, Arnau
    Adelmann, Andreas
    Munster, Lucas
    Rochman, Dimitri
    Boiger, Romana
    ANNALS OF NUCLEAR ENERGY, 2024, 196
  • [43] Introducing Robust Statistics in the Uncertainty Quantification of Nuclear Safeguards Measurements
    Cerasa, Andrea
    ENTROPY, 2022, 24 (08)
  • [44] Uncertainty quantification of spent nuclear fuel with multifidelity Monte Carlo
    Alba, Arnau
    Adelmann, Andreas
    Rochman, Dimitri
    ANNALS OF NUCLEAR ENERGY, 2024, 211
  • [45] Importance of uncertainty quantification in nuclear fuel behaviour modelling and simulation
    Boulore, A.
    NUCLEAR ENGINEERING AND DESIGN, 2019, 355
  • [46] VERIFICATION, VALIDATION AND UNCERTAINTY QUANTIFICATION OF A NUCLEAR THERMAL HYDRAULICS CODE
    Aydogan, Fatih
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6B, 2014,
  • [47] PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics
    Daw, Arka
    Maruf, M.
    Karpatne, Anuj
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 237 - 247
  • [48] Effect of mesh refinement on the solution of the inverse uncertainty quantification problem for transient physics
    Abu Saleem, Rabie A.
    Alsafadi, Farah R.
    Al-Abidah, Nadeen
    PROGRESS IN NUCLEAR ENERGY, 2022, 152
  • [49] Physics-informed variational inference for uncertainty quantification of stochastic differential equations
    Shin, Hyomin
    Choi, Minseok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
  • [50] Integrating Generative and Physics-Based Models for Ptychographic Imaging with Uncertainty Quantification
    Ekmekci, Canberk
    Bicer, Tekin
    Di, Zichao Wendy
    Deng, Junjing
    Cetin, Mujdat
    arXiv,