Antibiotic discovery in the artificial intelligence era

被引:17
|
作者
Lluka, Telmah [1 ]
Stokes, Jonathan M. [1 ,2 ]
机构
[1] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, David Braley Ctr Antibiot Discovery, Dept Biochem & Biomed Sci, Hamilton, ON, Canada
[2] McMaster Univ, Dept Biochem & Biomed Sci, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
antibiotics; drug discovery; machine learning; MACHINE LEARNING APPLICATIONS; DE-NOVO GENERATION; CHEMICAL SPACE; DRUG DISCOVERY; BIOLOGICAL-ACTIVITY; GENOME SEQUENCE; NEURAL-NETWORKS; PREDICTION; PLATFORM; DESIGN;
D O I
10.1111/nyas.14930
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the global burden of antibiotic resistance continues to grow, creative approaches to antibiotic discovery are needed to accelerate the development of novel medicines. A rapidly progressing computational revolution-artificial intelligence-offers an optimistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery pipeline. In this review, we discuss how advancements in artificial intelligence are reinvigorating the adoption of past antibiotic discovery models-namely natural product exploration and small molecule screening. We then explore the application of contemporary machine learning approaches to emerging areas of antibiotic discovery, including antibacterial systems biology, drug combination development, antimicrobial peptide discovery, and mechanism of action prediction. Lastly, we propose a call to action for open access of high-quality screening datasets and interdisciplinary collaboration to accelerate the rate at which machine learning models can be trained and new antibiotic drugs can be developed.
引用
收藏
页码:74 / 93
页数:20
相关论文
共 50 条
  • [41] Radiation Therapy in the Era of Artificial Intelligence
    Nguyen, Dan
    Li, H.
    Jiang, S.
    Van Soest, J.
    Conroy, L.
    Valdes, G.
    MEDICAL PHYSICS, 2020, 47 (06) : E357 - E357
  • [42] Neurology education in the era of artificial intelligence
    Kedar, Sachin
    Khazanchi, Deepak
    CURRENT OPINION IN NEUROLOGY, 2023, 36 (01) : 51 - 58
  • [43] Cancer Care in the Era of Artificial Intelligence
    Kurian, Matthew
    Adashek, Jacob J.
    West, Howard
    JAMA ONCOLOGY, 2024, 10 (05) : 683 - 683
  • [44] Generative artificial intelligence in the metaverse era
    Lv Z.
    Cognitive Robotics, 2023, 3 : 208 - 217
  • [45] Guest Editorial: Discovery and Artificial Intelligence
    King, Bernard F., Jr.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 209 (06) : 1189 - 1190
  • [46] Artificial intelligence in drug discovery and development
    Paul, Debleena
    Sanap, Gaurav
    Shenoy, Snehal
    Kalyane, Dnyaneshwar
    Kalia, Kiran
    Tekade, Rakesh K.
    DRUG DISCOVERY TODAY, 2020, 26 (01) : 80 - 93
  • [47] Scientific discovery in the age of artificial intelligence
    Wang, Hanchen
    Fu, Tianfan
    Du, Yuanqi
    Gao, Wenhao
    Huang, Kexin
    Liu, Ziming
    Chandak, Payal
    Liu, Shengchao
    Van Katwyk, Peter
    Deac, Andreea
    Anandkumar, Anima
    Bergen, Karianne
    Gomes, Carla P.
    Ho, Shirley
    Kohli, Pushmeet
    Lasenby, Joan
    Leskovec, Jure
    Liu, Tie-Yan
    Manrai, Arjun
    Marks, Debora
    Ramsundar, Bharath
    Song, Le
    Sun, Jimeng
    Tang, Jian
    Velickovic, Petar
    Welling, Max
    Zhang, Linfeng
    Coley, Connor W.
    Bengio, Yoshua
    Zitnik, Marinka
    NATURE, 2023, 620 (7972) : 47 - 60
  • [48] Amplify scientific discovery with artificial intelligence
    Gil, Yolanda
    Greaves, Mark
    Hendler, James
    Hirsh, Haym
    SCIENCE, 2014, 346 (6206) : 171 - 172
  • [49] Application of Artificial Intelligence in Drug Discovery
    Chopra, Hitesh
    Baig, Atif A.
    Gautam, Rupesh K.
    Kamal, Mohammad A.
    CURRENT PHARMACEUTICAL DESIGN, 2022, 28 (33) : 2690 - 2703
  • [50] A Hands-on Artificial Intelligence Discovery
    Petracek, Peter
    HORTSCIENCE, 2022, 57 (09) : S79 - S79