Locally penalized single-index model using B-splines and spherical coordinates

被引:0
|
作者
Jhong, Jae-Hwan [1 ]
Kim, Jae-Young [2 ]
Lee, Jae-Deok [3 ]
Koo, Ja-Yong [3 ]
机构
[1] Chungbuk Natl Univ, Dept Informat Stat, Cheongju, South Korea
[2] NAVER Corp, Seongnam Si, South Korea
[3] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Coordinate descent algorithm; localized penalty; total variation; VARIABLE SELECTION; ADAPTIVE LASSO; REGRESSION; DIMENSION;
D O I
10.1080/03610918.2021.2018459
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study, we focus on the estimation of the regression function in the single-index model based on B-splines using penalization techniques. We adopt a spherical coordinates reparameterization of an index vector to deal with an identification problem of the single-index model. To provide a spatially adaptive method, two types of penalties are applied to the estimation of the index vector and the regression function. A special penalty called the localized penalty is introduced to handle the sparsity of the index vector using the spherical coordinates, and the total variation penalty is considered to deal with the smoothing function. Using a coordinate descent algorithm with a grid search of the two tuning parameters, the entire solution paths of the index coefficients and the regression functions for tuning parameters can be obtained efficiently. The performance of the proposed estimator is studied through both numerical simulations and real data sets. An R software package pbssim is available.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [21] Single-index model selections
    Naik, PA
    Tsai, CL
    BIOMETRIKA, 2001, 88 (03) : 821 - 832
  • [22] Sparse Single-Index Model
    Alquier, Pierre
    Biau, Gerard
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 243 - 280
  • [23] Single-Index Model Tree
    Sudjianto, Agus
    Yang, Zebin
    Zhang, Aijun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 3101 - 3114
  • [24] Continuous model of irregular sampled data using multilevel B-splines
    Asahi, T
    López, A
    Chassat, F
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 921 - 924
  • [25] HAZARD FUNCTION ESTIMATION USING B-SPLINES
    ROSENBERG, PS
    BIOMETRICS, 1995, 51 (03) : 874 - 887
  • [26] Image registration using hierarchical B-splines
    Xie, ZY
    Farin, GE
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2004, 10 (01) : 85 - 94
  • [27] Automatic reconstruction of silhouettes using B-splines
    Glas, S
    Recatalá, G
    Sorg, M
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 239 - 246
  • [28] PASSIVE APPROXIMATION AND OPTIMIZATION USING B-SPLINES
    Ivanenko, Yevhen
    Custafsson, Mats
    Jonsson, B. L. G.
    Luger, Annemarie
    Nilsson, Borje
    Nordebo, Sven
    Toft, Joachim
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (01) : 436 - 458
  • [29] Unsupervised curve clustering using B-splines
    Abraham, C
    Cornillon, PA
    Matzner-Lober, E
    Molinari, N
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) : 581 - 595
  • [30] Circle approximation using integral B-splines
    Piegl, LA
    Tiller, W
    COMPUTER-AIDED DESIGN, 2003, 35 (06) : 601 - 607