Understanding metric-related pitfalls in image analysis validation

被引:34
|
作者
Reinke, Annika [1 ,2 ,3 ]
Tizabi, Minu D. [1 ,4 ]
Baumgartner, Michael [5 ]
Eisenmann, Matthias [1 ]
Heckmann-Noetzel, Doreen [1 ,4 ]
Kavur, A. Emre [1 ,5 ,6 ]
Raedsch, Tim [1 ,2 ]
Sudre, Carole H. [7 ,8 ,9 ]
Acion, Laura [10 ]
Antonelli, Michela [9 ,11 ]
Arbel, Tal [12 ,13 ]
Bakas, Spyridon [14 ,15 ]
Benis, Arriel [16 ,17 ]
Buettner, Florian [18 ,19 ,20 ,21 ,22 ]
Cardoso, M. Jorge [9 ]
Cheplygina, Veronika [23 ]
Chen, Jianxu [24 ]
Christodoulou, Evangelia [1 ]
Cimini, Beth A. [25 ]
Farahani, Keyvan [26 ]
Ferrer, Luciana [27 ]
Galdran, Adrian [28 ,29 ]
van Ginneken, Bram [30 ,31 ]
Glocker, Ben [32 ]
Godau, Patrick [1 ,3 ,4 ]
Hashimoto, Daniel A. [33 ,34 ]
Hoffman, Michael M. [35 ,36 ,37 ,38 ]
Huisman, Merel [39 ]
Isensee, Fabian [5 ,6 ]
Jannin, Pierre [40 ,41 ]
Kahn, Charles E. [42 ,43 ]
Kainmueller, Dagmar [44 ,45 ,46 ]
Kainz, Bernhard [47 ,48 ]
Karargyris, Alexandros [49 ]
Kleesiek, Jens [50 ]
Kofler, Florian [51 ]
Kooi, Thijs [52 ]
Kopp-Schneider, Annette [53 ]
Kozubek, Michal [54 ,55 ]
Kreshuk, Anna [56 ]
Kurc, Tahsin [57 ]
Landman, Bennett A. [58 ]
Litjens, Geert [59 ]
Madani, Amin [60 ]
Maier-Hein, Klaus [5 ,61 ]
Martel, Anne L. [36 ,62 ]
Meijering, Erik [63 ]
Menze, Bjoern [64 ]
Moons, Karel G. M. [65 ]
Mueller, Henning [66 ,67 ]
机构
[1] German Canc Res Ctr DKFZ Heidelberg, Div Intelligent Med Syst, Heidelberg, Germany
[2] German Canc Res Ctr DKFZ Heidelberg, HI Helmholtz Imaging, Heidelberg, Germany
[3] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[4] NCT Heidelberg, Natl Ctr Tumor Dis NCT, Heidelberg, Germany
[5] German Canc Res Ctr DKFZ Heidelberg, Div Med Image Comp, Heidelberg, Germany
[6] German Canc Res Ctr DKFZ Heidelberg, HI Appl Comp Vis Lab, Heidelberg, Germany
[7] UCL, MRC Unit Lifelong Hlth & Ageing, London, England
[8] UCL, Dept Comp Sci, Ctr Med Image Comp, London, England
[9] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[10] Univ Buenos Aires, Inst Calculo, CONICET, Buenos Aires, DF, Argentina
[11] UCL, Ctr Med Image Comp, London, England
[12] McGill Univ, Ctr Intelligent Machines, Montreal, PQ, Canada
[13] McGill Univ, MILA Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
[14] Indiana Univ Sch Med, Dept Pathol & Lab Med, Div Computat Pathol, Indianapolis, IN 46202 USA
[15] Univ Penn, Ctr Biomed Image Comp & Analyt CBICA, Philadelphia, PA 19104 USA
[16] Holon Inst Technol, Dept Digital Med Technol, Holon, Israel
[17] European Federat Med Informat, Le Mt Sur Lausanne, Switzerland
[18] German Canc Consortium DKTK, Partner Site Frankfurt Mainz, Frankfurt, Germany
[19] German Canc Res Ctr DKFZ Heidelberg, Heidelberg, Germany
[20] Goethe Univ Frankfurt, Dept Med, Frankfurt, Germany
[21] Goethe Univ Frankfurt, Dept Informat, Frankfurt, Germany
[22] Frankfurt Canc Insititute, Frankfurt, Germany
[23] IT Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[24] Leibniz Inst Analyt Wissensch ISAS eV, Dortmund, Germany
[25] Broad Inst MIT & Harvard, Imaging Platform, Cambridge, MA 02142 USA
[26] NCI, Ctr Biomed Informat & Informat Technol, Bethesda, MD 20892 USA
[27] UBA, CONICET, Inst Invest Ciencias Computac ICC, Buenos Aires, DF, Argentina
[28] Univ Pompeu Fabra, Barcelona, Spain
[29] Univ Adelaide, Adelaide, SA, Australia
[30] Fraunhofer MEVIS, Bremen, Germany
[31] Radboud Univ Nijmegen, Med Ctr, Radboud Inst Hlth Sci, Nijmegen, Netherlands
[32] Imperial Coll London, Dept Comp, South Kensington Campus, London, England
[33] Perelman Sch Med, Dept Surg, Philadelphia, PA USA
[34] Univ Penn, Sch Engn & Appl Sci, Gen Robot Automat Sensing & Percept Lab, Philadelphia, PA 19104 USA
[35] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[36] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[37] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[38] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[39] Radboud Univ Nijmegen, Med Ctr, Dept Radiol & Nucl Med, Nijmegen, Netherlands
[40] Univ Rennes 1, Lab Traitement Signal & Image, UMR S 1099, Rennes, France
[41] INSERM, Paris, France
[42] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[43] Univ Penn, Inst Biomed Informat, Philadelphia, PA 19104 USA
[44] Max Delbruck Ctr Mol Med, Helmholtz Assoc MDC, Biomed Image Anal, Berlin, Germany
[45] HI Helmholtz Imaging, Berlin, Germany
[46] Univ Potsdam, Digital Engn Fac, Potsdam, Germany
[47] Imperial Coll London, Fac Engn, Dept Comp, London, England
[48] Friedrich Alexander Univ, Dept AIBE, Erlangen, Germany
[49] IHU Strasbourg, Strasbourg, France
[50] Univ Med Essen, Inst AI Med IKIM, Translat Image Guided Oncol TIO, Essen, Germany
基金
荷兰研究理事会; 瑞士国家科学基金会; 英国工程与自然科学研究理事会; 欧洲研究理事会; 加拿大自然科学与工程研究理事会; 英国惠康基金; 美国国家卫生研究院; “创新英国”项目; 芬兰科学院;
关键词
SEGMENTATION;
D O I
10.1038/s41592-023-02150-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multistage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides a reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Although focused on biomedical image analysis, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. The work serves to enhance global comprehension of a key topic in image analysis validation. This Perspective presents a reliable and comprehensive source of information on pitfalls related to validation metrics in image analysis, with an emphasis on biomedical imaging.
引用
收藏
页码:182 / 194
页数:20
相关论文
共 50 条
  • [21] A COLOR METRIC AS A TOOL FOR CYTOLOGIC IMAGE-ANALYSIS
    GARBAY, C
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1982, 375 : 311 - 315
  • [22] Exploiting Related and Unrelated Tasks for Hierarchical Metric Learning and Image Classification
    Zheng, Yu
    Fan, Jianping
    Zhang, Ji
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 883 - 896
  • [23] Validation of microarray image analysis accuracy
    Marzolf, B
    Johnson, MH
    BIOTECHNIQUES, 2004, 36 (02) : 304 - +
  • [24] Validation of Automated Image Analysis for Hematopathology
    Dangott, B.
    Ramesh, N.
    Tasdizen, T.
    Salama, M.
    LABORATORY INVESTIGATION, 2012, 92 : 391A - 391A
  • [25] Image semantic analysis and understanding: A review
    Gao, Jun
    Xie, Zhao
    Zhang, Jun
    Wu, Ke-Wei
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (02): : 191 - 202
  • [26] Validation of Automated Image Analysis for Hematopathology
    Dangott, B.
    Ramesh, N.
    Tasdizen, T.
    Salama, M.
    MODERN PATHOLOGY, 2012, 25 : 391A - 391A
  • [27] Simulation and Validation in Brain Image Analysis
    Tohka, Jussi
    Bellec, Pierre
    Grova, Christophe
    Reilhac, Anthonin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [28] Understanding and comparative analysis of analytical method validation
    Noh, Jongsung
    Myung, Seung-Woon
    ANALYTICAL SCIENCE AND TECHNOLOGY, 2024, 37 (03): : 131 - 142
  • [29] Image Analysis as a Tool for Understanding Quantitative Analysis in Chromatography
    Skowron, Monika
    Smarzewska, Sylwia
    JOURNAL OF CHEMICAL EDUCATION, 2024, 101 (02) : 554 - 558
  • [30] The Robot Rights and Responsibilities Scale: Development and Validation of a Metric for Understanding Perceptions of Robots' Rights and Responsibilities
    Mays, Kate K.
    Cummings, James J.
    Katz, James E.
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2025, 41 (05) : 3413 - 3430