Electric-controlled pressure relief valve for enhanced safety in liquid-cooled lithium-ion battery packs

被引:8
|
作者
Song, Yuhang [1 ]
Hou, Jidong [1 ]
Lyu, Nawei [1 ]
Luo, Xinyuan [1 ]
Ma, Jingxuan [1 ]
Chen, Shuwen [1 ]
Wu, Peihao [1 ]
Jiang, Xin [1 ]
Jin, Yang [1 ]
机构
[1] Zhengzhou Univ, Res Ctr Grid Energy Storage & Battery Applicat, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China
来源
关键词
Pressure relief valve; Liquid-cooled battery pack; Explosion; Flacs; THERMAL-RUNAWAY; CATHODE MATERIALS; EXPLOSION; STRATEGIES; BEHAVIOR; WAVE;
D O I
10.1016/j.jechem.2023.11.007
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The liquid-cooled battery energy storage system (LCBESS) has gained significant attention due to its superior thermal management capacity. However, liquid-cooled battery pack (LCBP) usually has a high sealing level above IP65, which can trap flammable and explosive gases from battery thermal runaway and cause explosions. This poses serious safety risks and challenges for LCBESS. In this study, we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve (PRV) on the LCBP had a delayed response and low-pressure relief efficiency. A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software. Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions, considering different sizes and installation positions of the PRV. Here, a newly developed electric-controlled PRV integrated with battery fault detection is introduced, capable of starting within 50 ms of the battery safety valve opening. Furthermore, the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened. Experimental tests confirmed the efficacy of this method in preventing explosions. This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief.(c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 50 条
  • [11] A state-of-the-art review on numerical investigations of liquid-cooled battery thermal management systems for lithium-ion batteries of electric vehicles
    Sharma, Ashutosh
    Khatamifar, Mehdi
    Lin, Wenxian
    Pitchumani, Ranga
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [12] STUDY ON COOLING OF BIONIC LEAF-VEIN CHANNEL LIQUID-COOLED PLATE FOR LITHIUM-ION BATTERY PACK
    Sun, Guangqiang
    Li, Zhiqiang
    Wang, Fang
    Liu, Xianfei
    Ba, Yichun
    THERMAL SCIENCE, 2024, 28 (5A): : 3907 - 3919
  • [13] STUDY ON COOLING OF BIONIC LEAF-VEIN CHANNEL LIQUID-COOLED PLATE FOR LITHIUM-ION BATTERY PACK
    SUN, Guangqiang
    LI, Zhiqiang
    WANG, Fang
    LIU, Xianfei
    BA, Yichun
    Thermal Science, 2024, 28 (05): : 3907 - 3919
  • [14] Impact of Aerogel Barrier on Liquid-Cooled Lithium-Ion Battery Thermal Management System's Cooling Efficiency
    Zeng, Keyi
    Zhang, Ying
    Tian, Liyu
    Lai, Zengyan
    Zhu, Liang
    Ma, Chuyuan
    ENERGY TECHNOLOGY, 2024, 12 (11)
  • [15] Design of lithium-ion battery packs for two-wheeled electric vehicles
    Javia, Dhruval
    Tewari, Kartik
    Budarapu, Pattabhi Ramaiah
    Natarajan, Sundararajan
    ENERGY STORAGE, 2023, 5 (07)
  • [16] A novel fault diagnosis method for lithium-Ion battery packs of electric vehicles
    Li, Xiaoyu
    Wang, Zhenpo
    MEASUREMENT, 2018, 116 : 402 - 411
  • [17] Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct
    Shri Ramdeobaba College of Engineering and Management, Nagpur
    Maharashtra, India
    J. Energy Storage, 2022,
  • [18] Numerical investigation on thermal characteristics of a liquid-cooled lithium-ion battery pack with cylindrical cell casings and a square duct
    Tete, Pranjali R.
    Gupta, Mahendra M.
    Joshi, Sandeep S.
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [19] A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles
    Chen, Zheng
    Li, Xiaoyu
    Shen, Jiangwei
    Yan, Wensheng
    Xiao, Renxin
    ENERGIES, 2016, 9 (09)
  • [20] Effect of Current Path on Parallel Lithium-ion Cells in Electric Vehicles Battery Packs
    Lebel, Felix-A.
    Lebreux, Normand
    Dubois, Maxime
    Trovao, Joao Pedro
    2017 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2017,