Safety helmet detection method based on semantic guidance and feature selection fusion

被引:1
|
作者
Xu, Zhigang [1 ]
Li, Yugen [1 ]
Zhu, Honglei [1 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
关键词
Safety helmet detection; CenterNet; Multi-scale non-local module; Feature selection fusion;
D O I
10.1007/s11760-023-02595-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Safety helmet detection is a hot topic of research in the field of industrial safety for object detection technology. Existing object detection methods still face great challenges for the detection of small-scale safety helmet object. In this paper, we propose a safety helmet detection method based on the fusion of semantic guidance and feature selection. The method is able to consider the balance between detection performance and efficiency. First, a multi-scale non-local module is proposed to establish internal correlations between different scales of deep image features as well as to aggregate semantic context information to guide the information recovery of decoder network features. Then the feature selection fusion structure is proposed to adaptively select deep features and underlying key features for fusion to make up for the missing semantic and spatial detail information of the decoding network and improve the spatial location expression capability of the decoding network. Experimental analysis shows that the method in this paper has good detection performance on the expanded safety helmet wearing dataset with 5.12% improvement in mAP compared to the baseline method CenterNet, and 6.11% improvement in AP for the safety helmet object.
引用
收藏
页码:3683 / 3691
页数:9
相关论文
共 50 条
  • [41] Target Detection Method Based on Improved Quadratic Feature Fusion
    Hao, Ziqiang
    Wang, Zhongyuan
    Liu, Meng
    Zhan, Weida
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 404 - 407
  • [42] Code vulnerability detection method based on contextual feature fusion
    Xu Z.-X.
    Duan L.-J.
    Wang W.-J.
    En Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (11): : 2260 - 2270
  • [43] A Novel Gaze Detection Method Based on Local Feature Fusion
    Li, Juan
    Dong, Yahui
    Xu, Hui
    Sun, Hui
    Qi, Miao
    INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 380 - 393
  • [44] A Web Shell Detection Method Based on Multiview Feature Fusion
    Zhu, Tiantian
    Weng, Zhengqiu
    Fu, Lei
    Ruan, Linqi
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [45] Lightweight SSD object detection method based on feature fusion
    Wu Tian-cheng
    Wang Xiao-quan
    Cai Yi-jun
    Jing You-bo
    Chen Cheng-ying
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (10) : 1437 - 1444
  • [46] A violence detection method based on deep and shallow feature fusion
    Lin'en Liu
    Xuguang Zhang
    Instrumentation, 2024, 11 (04) : 64 - 75
  • [47] Crack detection method for concrete surface based on feature fusion
    Hong, Cheng
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (4-5) : 3275 - 3286
  • [48] FAKE NEWS DETECTION BASED ON MULTI-FEATURE FUSION UNDER ATTENTION GUIDANCE
    Peng, Yan
    Wu, Huimin
    Wang, Lei
    Wang, Jie
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (09) : 1931 - 1941
  • [49] A Method Based on Support Vector Machine for Feature Selection of Latent Semantic Features
    Li, Min-Song
    ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, PTS 1-2, 2011, 181-182 : 830 - 835
  • [50] An Evolutionary Computation Based Feature Selection Method for Intrusion Detection
    Xue, Yu
    Jia, Weiwei
    Zhao, Xuejian
    Pang, Wei
    SECURITY AND COMMUNICATION NETWORKS, 2018,