Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks

被引:3
|
作者
Asadzadeh, Mohammad Zhian [1 ]
Roppert, Klaus [2 ]
Raninger, Peter [1 ]
机构
[1] Mat Ctr Leoben Forsch GmbH MCL, Roseggerstr 12, A-8700 Leoben, Austria
[2] Graz Univ Technol, Inst Fundamentals & Theory Elect Engn, Inffeldgasse 18-1, A-8010 Graz, Austria
关键词
neural networks; inverse problems; PINNS; induction heating; material data;
D O I
10.3390/ma16145013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physics-Informed neural networks (PINNs) have demonstrated remarkable performance in solving partial differential equations (PDEs) by incorporating the governing PDEs into the network's loss function during optimization. PINNs have been successfully applied to diverse inverse and forward problems. This study investigates the feasibility of using PINNs for material data identification in an induction hardening test rig. By utilizing temperature sensor data and imposing the heat equation with initial and boundary conditions, thermo-physical material properties, such as specific heat, thermal conductivity, and the heat convection coefficient, were estimated. To validate the effectiveness of the PINNs in material data estimation, benchmark data generated by a finite element model (FEM) of an air-cooled cylindrical sample were used. The accurate identification of the material data using only a limited number of virtual temperature sensor data points was demonstrated. The influence of the sensor positions and measurement noise on the uncertainty of the estimated parameters was examined. The study confirms the robustness and accuracy of this approach in the presence of measurement noise, albeit with lower efficiency, thereby requiring more time to converge. Lastly, the applicability of the presented approach to real measurement data obtained from an air-cooled cylindrical sample heated in an induction heating test rig was discussed. This research contributes to the accurate offline estimation of material data and has implications for optimizing induction heat treatments.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [2] Structural parameter identification using physics-informed neural networks
    Guo, Xin-Yu
    Fang, Sheng-En
    MEASUREMENT, 2023, 220
  • [3] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [4] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Randomized physics-informed neural networks for Bayesian data assimilation
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [6] The Potential for Material Property Characterization Using Physics-Informed Neural Networks and Ultrasonic Wave Data
    Lee, Sangmin
    Popovics, John S.
    RESEARCH IN NONDESTRUCTIVE EVALUATION, 2024, 35 (04) : 211 - 231
  • [7] Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks
    Khalid, Md Meraj
    Schenkendorf, Rene
    ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023, 2024, : 51 - 60
  • [8] Damage identification for plate structures using physics-informed neural networks
    Zhou, Wei
    Xu, Y. F.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [9] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [10] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705