Evaluation of deep learning models for classification of asphalt pavement distresses

被引:14
|
作者
Apeagyei, Alex [1 ]
Ademolake, Toyosi Elijah [1 ]
Adom-Asamoah, Mark [2 ]
机构
[1] Univ East London, Sch Architecture Comp & Engn, London, England
[2] Kwame Nkrumah Univ Sci & Technol, Coll Engn, Kumasi, Ghana
关键词
Asphalt; asphalt pavements; pavement distresses; pavement distresses classification; F1-score; transfer learning; rutting; fatigue cracking; transverse cracking; longitudinal cracking; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1080/10298436.2023.2180641
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Transfer learning (TL) offers a convenient methodology for exploiting the capability of deep convolutional neural networks (DCNNs) for many image classification tasks including the classification of pavement distresses. Seven state-of-the-art DCNNs were retrained to classify asphalt pavement distresses grouped into eight classes using TL techniques. The aim was to evaluate the predictive performances of the selected DCNNs in order to provide some guidelines on selection of DCNNs for pavement application. The results show some existing DCNN's are better than others for developing pavement distress classification models using the specific TL approach adopted in the study. The predictive ability of each model varied depending on distress class as some models with very low overall accuracy showed excellent results for individual distress class(s). Based on a combination of various performance metrics including F1-score, area under ROC curve, optimal operating threshold, training time, and model size, the best performing network had a relative score that was found to be significantly higher than the next two top-performing models. The best-performing networks were characterised by lower proportions of false negative values, low ambiguity scores, and well-defined t-SNE clusters that showed clear separation between the eight different pavement distress classes considered.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Crack Detection and Classification in Asphalt Pavement Images using Deep Convolution Neural Network
    Yusof, N. A. M.
    Osman, M. K.
    Noor, M. H. M.
    Ibrahim, A.
    Tahir, N. M.
    Yusof, N. M.
    2018 8TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE 2018), 2018, : 227 - 232
  • [42] A LIGHTWEIGHT MODEL FOR PAVEMENT GARBAGE CLASSIFICATION BASED ON DEEP LEARNING
    Chen G.
    Tong W.
    Cheng Y.
    Dai J.
    Chen, Guoqiang (chengq@hpu.edu.cn), 1600, Cefin Publishing House (01): : 228 - 234
  • [43] Automated Pavement Cracks Detection and Classification Using Deep Learning
    Nafaa, Selvia
    Ashour, Karim
    Mohamed, Rana
    Essam, Hafsa
    Emad, Doaa
    Elhenawy, Mohammed
    Ashqar, Huthaifa I.
    Hassan, Abdallah A.
    Alhadidi, Taqwa I.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [44] Deep Learning Frameworks for Pavement Distress Classification: A Comparative Analysis
    Mandal, Vishal
    Mussah, Abdul Rashid
    Adu-Gyamfi, Yaw
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 5577 - 5583
  • [45] A deep learning automatic classification method for clogging pervious pavement
    Zhang, Zhongze
    Xue, Jianing
    Zhang, Jiong
    Yang, Mingqiang
    Meng, Bowen
    Tan, Yiran
    Ren, Shipu
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 309
  • [46] Sketch Classification with Deep Learning Models
    Eyiokur, Fevziye Irem
    Yaman, Dogucan
    Ekenel, Hazim Kemal
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [47] Evaluation of Asphalt Mixes Containing Reclaimed Asphalt Pavement
    Arshad, Hussain
    Qiu Yanjun
    SUSTAINABLE ENVIRONMENT AND TRANSPORTATION, PTS 1-4, 2012, 178-181 : 1522 - 1525
  • [48] Ensemble Machine Learning Classification Models for Predicting Pavement Condition
    Chung, Frederick
    Doyle, Andy
    Robinson, Ernay
    Paik, Yejee
    Li, Mingshu
    Baek, Minsoo
    Moore, Brian
    Ashuri, Baabak
    TRANSPORTATION RESEARCH RECORD, 2024,
  • [49] A novel method for asphalt pavement crack classification based on image processing and machine learning
    Nhat-Duc Hoang
    Quoc-Lam Nguyen
    ENGINEERING WITH COMPUTERS, 2019, 35 (02) : 487 - 498
  • [50] A novel approach for asphalt pavement invisible distress classification prediction by machine learning algorithms
    Shi, Jicun
    Jia, Shili
    Bai, Chengxiang
    Wang, Duanyi
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2024, 25 (01)